commit aa3b406473c04942b5d4a8622f2dd479ca0fd795
parent 7c907f173d5e8c2fbc3604a02d1cd0979c7a655b
Author: NunoSempere <nuno.sempere@protonmail.com>
Date: Fri, 16 Feb 2024 15:13:21 +0100
use different seeds for different threads
Diffstat:
| M | go/squiggle.go | | | 63 | ++++++++++++++++++++++++++++++++------------------------------- |
1 file changed, 32 insertions(+), 31 deletions(-)
diff --git a/go/squiggle.go b/go/squiggle.go
@@ -5,42 +5,40 @@ import "math"
import "sync"
import rand "math/rand/v2"
-type func64 = func() float64
type source = *rand.Rand
-
-var r source = rand.New(rand.NewPCG(1, 2))
+type func64 = func(source) float64
// https://pkg.go.dev/math/rand/v2
-func sample_unit_uniform() float64 {
+func sample_unit_uniform(r source) float64 {
return r.Float64()
}
-func sample_unit_normal() float64 {
+func sample_unit_normal(r source) float64 {
return r.NormFloat64()
}
-func sample_uniform(start float64, end float64) float64 {
- return sample_unit_uniform()*(end-start) + start
+func sample_uniform(start float64, end float64, r source) float64 {
+ return sample_unit_uniform(r)*(end-start) + start
}
-func sample_normal(mean float64, sigma float64) float64 {
- return mean + sample_unit_normal()*sigma
+func sample_normal(mean float64, sigma float64, r source) float64 {
+ return mean + sample_unit_normal(r)*sigma
}
-func sample_lognormal(logmean float64, logstd float64) float64 {
- return (math.Exp(sample_normal(logmean, logstd)))
+func sample_lognormal(logmean float64, logstd float64, r source) float64 {
+ return (math.Exp(sample_normal(logmean, logstd, r)))
}
-func sample_normal_from_90_ci(low float64, high float64) float64 {
+func sample_normal_from_90_ci(low float64, high float64, r source) float64 {
var normal90 float64 = 1.6448536269514727
var mean float64 = (high + low) / 2.0
var std float64 = (high - low) / (2.0 * normal90)
- return sample_normal(mean, std)
+ return sample_normal(mean, std, r)
}
-func sample_to(low float64, high float64) float64 {
+func sample_to(low float64, high float64, r source) float64 {
// Given a (positive) 90% confidence interval,
// returns a sample from a lognorma with a matching 90% c.i.
// Key idea: If we want a lognormal with 90% confidence interval [a, b]
@@ -48,10 +46,10 @@ func sample_to(low float64, high float64) float64 {
// Then see code for sample_normal_from_90_ci
var loglow float64 = math.Log(low)
var loghigh float64 = math.Log(high)
- return math.Exp(sample_normal_from_90_ci(loglow, loghigh))
+ return math.Exp(sample_normal_from_90_ci(loglow, loghigh, r))
}
-func sample_mixture(fs []func64, weights []float64) float64 {
+func sample_mixture(fs []func64, weights []float64, r source) float64 {
// fmt.Println("weights initially: ", weights)
var sum_weights float64 = 0
@@ -72,7 +70,7 @@ func sample_mixture(fs []func64, weights []float64) float64 {
for i, cnw := range cumsummed_normalized_weights {
if p < cnw {
- result = fs[i]()
+ result = fs[i](r)
flag = 1
break
}
@@ -80,31 +78,29 @@ func sample_mixture(fs []func64, weights []float64) float64 {
// fmt.Println(cumsummed_normalized_weights)
if flag == 0 {
- result = fs[len(fs)-1]()
+ result = fs[len(fs)-1](r)
}
return result
}
-func slice_fill(xs []float64, fs func64) {
+func slice_fill(xs []float64, fs func64, r source) {
for i := range xs {
- xs[i] = fs()
+ xs[i] = fs(r)
}
}
func main() {
- fmt.Printf("Type of r: %T\n", r)
-
var p_a float64 = 0.8
var p_b float64 = 0.5
var p_c float64 = p_a * p_b
ws := [4](float64){1 - p_c, p_c / 2, p_c / 4, p_c / 4}
- sample_0 := func() float64 { return 0 }
- sample_1 := func() float64 { return 1 }
- sample_few := func() float64 { return sample_to(1, 3) }
- sample_many := func() float64 { return sample_to(2, 10) }
+ sample_0 := func(r source) float64 { return 0 }
+ sample_1 := func(r source) float64 { return 1 }
+ sample_few := func(r source) float64 { return sample_to(1, 3, r) }
+ sample_many := func(r source) float64 { return sample_to(2, 10, r) }
fs := [4](func64){sample_0, sample_1, sample_few, sample_many}
var n_samples int = 1_000_000
@@ -115,27 +111,32 @@ func main() {
var xs2 = xs[500_000:750_000]
var xs3 = xs[750_000:1_000_000]
- model := func() float64 { return sample_mixture(fs[0:], ws[0:]) }
+ model := func(r source) float64 { return sample_mixture(fs[0:], ws[0:], r) }
var wg sync.WaitGroup
wg.Add(4)
// Note: these should have different randomness functions!!
+
go func() {
defer wg.Done()
- slice_fill(xs0, model)
+ var r = rand.New(rand.NewPCG(1, 2))
+ slice_fill(xs0, model, r)
}()
go func() {
defer wg.Done()
- slice_fill(xs1, model)
+ var r = rand.New(rand.NewPCG(2, 3))
+ slice_fill(xs1, model, r)
}()
go func() {
defer wg.Done()
- slice_fill(xs2, model)
+ var r = rand.New(rand.NewPCG(3, 4))
+ slice_fill(xs2, model, r)
}()
go func() {
defer wg.Done()
- slice_fill(xs3, model)
+ var r = rand.New(rand.NewPCG(4, 5))
+ slice_fill(xs3, model, r)
}()
wg.Wait()