commit 5dead1a2c16fc00cc6d13cb282f750e243ff3f09
parent 7724115933a5f35449d1433d228b44aba70e2ba7
Author: NunoSempere <nuno.sempere@protonmail.com>
Date: Mon, 29 May 2023 17:51:24 -0400
make format
Diffstat:
| M | C-optimized/samples.c | | | 186 | +++++++++++++++++++++++++++++++++++++++++-------------------------------------- |
1 file changed, 96 insertions(+), 90 deletions(-)
diff --git a/C-optimized/samples.c b/C-optimized/samples.c
@@ -1,8 +1,8 @@
#include <math.h>
+#include <omp.h>
+#include <stdio.h>
#include <stdlib.h>
#include <time.h>
-#include <stdio.h>
-#include <omp.h>
const float PI = 3.14159265358979323846;
@@ -10,67 +10,73 @@ const float PI = 3.14159265358979323846;
//Array helpers
-void array_print(float* array, int length) {
- for (int i = 0; i < length; i++)
- {
+void array_print(float* array, int length)
+{
+ for (int i = 0; i < length; i++) {
printf("item[%d] = %f\n", i, array[i]);
}
printf("\n");
}
-void array_fill(float* array, int length, float item) {
+void array_fill(float* array, int length, float item)
+{
int i;
- #pragma omp private (i)
+#pragma omp private(i)
{
- #pragma omp for
- for (i = 0; i < length; i++)
- {
+#pragma omp for
+ for (i = 0; i < length; i++) {
array[i] = item;
}
- }
+ }
}
-float array_sum(float* array, int length) {
+float array_sum(float* array, int length)
+{
float output = 0.0;
- for (int i = 0; i < length; i++)
- {
+ for (int i = 0; i < length; i++) {
output += array[i];
}
return output;
}
-void array_cumsum(float* array_to_sum, float* array_cumsummed, int length) {
+void array_cumsum(float* array_to_sum, float* array_cumsummed, int length)
+{
array_cumsummed[0] = array_to_sum[0];
- for (int i = 1; i < length; i++)
- {
- array_cumsummed[i] = array_cumsummed[i-1] + array_to_sum[i];
+ for (int i = 1; i < length; i++) {
+ array_cumsummed[i] = array_cumsummed[i - 1] + array_to_sum[i];
}
}
-
-float rand_float(float to) {
- return ((float)rand()/(float)RAND_MAX) * to;
+
+float rand_float(float to)
+{
+ return ((float)rand() / (float)RAND_MAX) * to;
}
-float ur_normal() {
+float ur_normal()
+{
float u1 = rand_float(1.0);
float u2 = rand_float(1.0);
float z = sqrtf(-2.0 * log(u1)) * sin(2 * PI * u2);
return z;
}
-inline float random_uniform(float from, float to) {
- return ((float)rand()/(float)RAND_MAX)*(to-from)+from;
+inline float random_uniform(float from, float to)
+{
+ return ((float)rand() / (float)RAND_MAX) * (to - from) + from;
}
-inline float random_normal(float mean, float sigma) {
+inline float random_normal(float mean, float sigma)
+{
return (mean + sigma * ur_normal());
}
-inline float random_lognormal(float logmean, float logsigma) {
+inline float random_lognormal(float logmean, float logsigma)
+{
return expf(random_normal(logmean, logsigma));
}
-inline float random_to(float low, float high) {
+inline float random_to(float low, float high)
+{
const float NORMAL95CONFIDENCE = 1.6448536269514722;
float loglow = logf(low);
float loghigh = logf(high);
@@ -79,28 +85,32 @@ inline float random_to(float low, float high) {
return random_lognormal(logmean, logsigma);
}
-void array_random_to(float* array, int length, float low, float high) {
+void array_random_to(float* array, int length, float low, float high)
+{
int i;
- #pragma omp private(i)
+#pragma omp private(i)
{
- #pragma omp for
- for (i = 0; i < length; i++)
- {
+#pragma omp for
+ for (i = 0; i < length; i++) {
array[i] = random_to(low, high);
}
}
}
-int split_array_get_my_length(int index, int total_length, int n_threads) {
- return (total_length%n_threads > index ? total_length/n_threads+1 : total_length/n_threads);
+int split_array_get_my_length(int index, int total_length, int n_threads)
+{
+ return (total_length % n_threads > index ? total_length / n_threads + 1 : total_length / n_threads);
}
//Old version, don't use it!! Optimized version is called mixture_f. This one is just for display
-void mixture(float* dists[], float* weights, int n_dists, float* results) {
+void mixture(float* dists[], float* weights, int n_dists, float* results)
+{
float sum_weights = array_sum(weights, n_dists);
float* normalized_weights = malloc(n_dists * sizeof(float));
- for (int i = 0; i < n_dists; i++) {normalized_weights[i] = weights[i] / sum_weights;}
-
+ for (int i = 0; i < n_dists; i++) {
+ normalized_weights[i] = weights[i] / sum_weights;
+ }
+
float* cummulative_weights = malloc(n_dists * sizeof(float));
array_cumsum(normalized_weights, cummulative_weights, n_dists);
@@ -108,44 +118,42 @@ void mixture(float* dists[], float* weights, int n_dists, float* results) {
float p1, p2;
int index_found, index_counter, sample_index, i;
- #pragma omp parallel private (i, p1, p2, index_found, index_counter, sample_index)
+#pragma omp parallel private(i, p1, p2, index_found, index_counter, sample_index)
{
- #pragma omp for
- for (i = 0; i < N; i++)
- {
+#pragma omp for
+ for (i = 0; i < N; i++) {
p1 = random_uniform(0, 1);
p2 = random_uniform(0, 1);
index_found = 0;
index_counter = 0;
- while ((index_found == 0) && (index_counter < n_dists))
- {
- if (p1 < cummulative_weights[index_counter])
- {
+ while ((index_found == 0) && (index_counter < n_dists)) {
+ if (p1 < cummulative_weights[index_counter]) {
index_found = 1;
- } else
- {
+ } else {
index_counter++;
}
}
- if (index_found != 0)
- {
- sample_index = (int) (p2 * N);
+ if (index_found != 0) {
+ sample_index = (int)(p2 * N);
results[i] = dists[index_counter][sample_index];
- }
- else printf("This shouldn't be able to happen.\n");
+ } else
+ printf("This shouldn't be able to happen.\n");
}
}
free(normalized_weights);
free(cummulative_weights);
}
-void mixture_f(float (*samplers[])(void), float* weights, int n_dists, float** results, int n_threads) {
+void mixture_f(float (*samplers[])(void), float* weights, int n_dists, float** results, int n_threads)
+{
float sum_weights = array_sum(weights, n_dists);
float* normalized_weights = malloc(n_dists * sizeof(float));
- for (int i = 0; i < n_dists; i++) {normalized_weights[i] = weights[i] / sum_weights;}
-
+ for (int i = 0; i < n_dists; i++) {
+ normalized_weights[i] = weights[i] / sum_weights;
+ }
+
float* cummulative_weights = malloc(n_dists * sizeof(float));
array_cumsum(normalized_weights, cummulative_weights, n_dists);
@@ -153,19 +161,15 @@ void mixture_f(float (*samplers[])(void), float* weights, int n_dists, float** r
float p1;
int sample_index, i, own_length;
- #pragma omp parallel private (i, p1, sample_index, own_length)
+#pragma omp parallel private(i, p1, sample_index, own_length)
{
- #pragma omp for
- for (i = 0; i < n_threads; i++)
- {
+#pragma omp for
+ for (i = 0; i < n_threads; i++) {
own_length = split_array_get_my_length(i, N, n_threads);
- for (int j = 0; j < own_length; j++)
- {
+ for (int j = 0; j < own_length; j++) {
p1 = random_uniform(0, 1);
- for (int k = 0; k < n_dists; k++)
- {
- if (p1 < cummulative_weights[k])
- {
+ for (int k = 0; k < n_dists; k++) {
+ if (p1 < cummulative_weights[k]) {
results[i][j] = samplers[k]();
break;
}
@@ -177,65 +181,67 @@ void mixture_f(float (*samplers[])(void), float* weights, int n_dists, float** r
free(cummulative_weights);
}
-float sample_0() {
+float sample_0()
+{
return 0;
}
-float sample_1() {
+float sample_1()
+{
return 1;
}
-float sample_few() {
+float sample_few()
+{
return random_to(1, 3);
}
-float sample_many() {
+float sample_many()
+{
return random_to(2, 10);
}
-void split_array_allocate(float** meta_array, int length, int divide_into) {
+void split_array_allocate(float** meta_array, int length, int divide_into)
+{
int own_length;
- for (int i = 0; i < divide_into; i++)
- {
+ for (int i = 0; i < divide_into; i++) {
own_length = split_array_get_my_length(i, length, divide_into);
- meta_array[i] = malloc(own_length*sizeof(float));
+ meta_array[i] = malloc(own_length * sizeof(float));
}
-
}
-void split_array_free(float** meta_array, int divided_into) {
- for (int i = 0; i < divided_into; i++)
- {
+void split_array_free(float** meta_array, int divided_into)
+{
+ for (int i = 0; i < divided_into; i++) {
free(meta_array[i]);
}
free(meta_array);
}
-float split_array_sum(float** meta_array, int length, int divided_into) {
+float split_array_sum(float** meta_array, int length, int divided_into)
+{
int i;
float output;
- float* partial_sum = malloc(divided_into*sizeof(float));
+ float* partial_sum = malloc(divided_into * sizeof(float));
- #pragma omp private(i) shared(partial_sum)
- for (int i = 0; i < divided_into; i++)
- {
+#pragma omp private(i) shared(partial_sum)
+ for (int i = 0; i < divided_into; i++) {
float own_partial_sum = 0;
int own_length = split_array_get_my_length(i, length, divided_into);
- for (int j = 0; j < own_length; j++)
- {
+ for (int j = 0; j < own_length; j++) {
own_partial_sum += meta_array[i][j];
}
partial_sum[i] = own_partial_sum;
}
- for (int i = 0; i < divided_into; i++)
- {
+ for (int i = 0; i < divided_into; i++) {
output += partial_sum[i];
}
return output;
}
-int main() {
+int main()
+{
clock_t start, end;
start = clock();
//initialize randomness
@@ -244,7 +250,7 @@ int main() {
// Declare variables in play
float p_a, p_b, p_c;
int n_threads = omp_get_max_threads();
- float** dist_mixture = malloc(n_threads*sizeof(float*));
+ float** dist_mixture = malloc(n_threads * sizeof(float*));
split_array_allocate(dist_mixture, N, n_threads);
// Initialize variables
@@ -255,7 +261,7 @@ int main() {
// Generate mixture
int n_dists = 4;
float weights[] = { 1 - p_c, p_c / 2, p_c / 4, p_c / 4 };
- float (*samplers[])(void) = {sample_0, sample_1, sample_few, sample_many};
+ float (*samplers[])(void) = { sample_0, sample_1, sample_few, sample_many };
mixture_f(samplers, weights, n_dists, dist_mixture, n_threads);
printf("Sum(dist_mixture, N)/N = %f\n", split_array_sum(dist_mixture, N, n_threads) / N);
@@ -263,6 +269,6 @@ int main() {
end = clock();
split_array_free(dist_mixture, n_threads);
- printf("Total time (ms): %f\n", ((double) (end-start)) / CLOCKS_PER_SEC * 1000);
+ printf("Total time (ms): %f\n", ((double)(end - start)) / CLOCKS_PER_SEC * 1000);
return 0;
}