commit 546a9ee0b566c36847eaaf09d59d202fe09aea7e
parent 825336ef0ac374a5d6cc9a1342e835f05c46dd8d
Author: NunoSempere <nuno.sempere@protonmail.com>
Date: Thu, 30 Nov 2023 00:02:02 +0000
update squiggle.c
Diffstat:
4 files changed, 249 insertions(+), 176 deletions(-)
diff --git a/squiggle.c/samples.c b/squiggle.c/samples.c
@@ -9,21 +9,22 @@ int main()
double p_b = 0.5;
double p_c = p_a * p_b;
- double sample_0(uint64_t* seed){ return 0; }
- double sample_1(uint64_t* seed) { return 1; }
- double sample_few(uint64_t* seed) { return sample_to(1, 3, seed); }
- double sample_many(uint64_t* seed) { return sample_to(2, 10, seed); }
+ double sample_0(uint64_t * seed) { return 0; }
+ double sample_1(uint64_t * seed) { return 1; }
+ double sample_few(uint64_t * seed) { return sample_to(1, 3, seed); }
+ double sample_many(uint64_t * seed) { return sample_to(2, 10, seed); }
int n_dists = 4;
double weights[] = { 1 - p_c, p_c / 2, p_c / 4, p_c / 4 };
double (*samplers[])(uint64_t*) = { sample_0, sample_1, sample_few, sample_many };
- double sampler_result(uint64_t* seed) {
+ double sampler_result(uint64_t * seed)
+ {
return sample_mixture(samplers, weights, n_dists, seed);
- }
+ }
int n_samples = 1000 * 1000, n_threads = 16;
double* results = malloc(n_samples * sizeof(double));
- parallel_sampler(sampler_result, results, n_threads, n_samples);
- printf("Avg: %f\n", array_sum(results, n_samples)/n_samples);
+ sampler_parallel(sampler_result, results, n_threads, n_samples);
+ printf("Avg: %f\n", array_sum(results, n_samples) / n_samples);
free(results);
}
diff --git a/squiggle.c/squiggle_c/squiggle.c b/squiggle.c/squiggle_c/squiggle.c
@@ -8,7 +8,7 @@
#define NORMAL90CONFIDENCE 1.6448536269514727
// Pseudo Random number generator
-uint64_t xorshift32(uint32_t* seed)
+static uint64_t xorshift32(uint32_t* seed)
{
// Algorithm "xor" from p. 4 of Marsaglia, "Xorshift RNGs"
// See:
@@ -24,7 +24,7 @@ uint64_t xorshift32(uint32_t* seed)
return *seed = x;
}
-uint64_t xorshift64(uint64_t* seed)
+static uint64_t xorshift64(uint64_t* seed)
{
// same as above, but for generating doubles instead of floats
uint64_t x = *seed;
diff --git a/squiggle.c/squiggle_c/squiggle_more.c b/squiggle.c/squiggle_c/squiggle_more.c
@@ -1,67 +1,226 @@
+#include "squiggle.h"
#include <float.h>
-#include <math.h>
#include <limits.h>
+#include <math.h>
#include <omp.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
-#include "squiggle.h"
-/* Math constants */
-#define PI 3.14159265358979323846 // M_PI in gcc gnu99
-#define NORMAL90CONFIDENCE 1.6448536269514727
+/* Parallel sampler */
+void sampler_parallel(double (*sampler)(uint64_t* seed), double* results, int n_threads, int n_samples)
+{
-/* Some error niceties */
-// These won't be used until later
-#define MAX_ERROR_LENGTH 500
-#define EXIT_ON_ERROR 0
-#define PROCESS_ERROR(error_msg) process_error(error_msg, EXIT_ON_ERROR, __FILE__, __LINE__)
+ // Division terminology:
+ // a = b * quotient + reminder
+ // a = (a/b)*b + (a%b)
+ // dividend: a
+ // divisor: b
+ // quotient = a / b
+ // reminder = a % b
+ // "divisor's multiple" := (a/b)*b
+
+ // now, we have n_samples and n_threads
+ // to make our life easy, each thread will have a number of samples of: a/b (quotient)
+ // and we'll compute the remainder of samples separately
+ // to possibly do by Jorge: improve so that the remainder is included in the threads
+
+ int quotient = n_samples / n_threads;
+ /* int remainder = n_samples % n_threads; // not used, comment to avoid lint warning */
+ int divisor_multiple = quotient * n_threads;
+
+ uint64_t** seeds = malloc(n_threads * sizeof(uint64_t*));
+ // printf("UINT64_MAX: %lu\n", UINT64_MAX);
+ srand(1);
+ for (uint64_t i = 0; i < n_threads; i++) {
+ seeds[i] = malloc(sizeof(uint64_t));
+ // Constraints:
+ // - xorshift can't start with 0
+ // - the seeds should be reasonably separated and not correlated
+ *seeds[i] = (uint64_t)rand() * (UINT64_MAX / RAND_MAX);
+ // printf("#%ld: %lu\n",i, *seeds[i]);
+
+ // Other initializations tried:
+ // *seeds[i] = 1 + i;
+ // *seeds[i] = (i + 0.5)*(UINT64_MAX/n_threads);
+ // *seeds[i] = (i + 0.5)*(UINT64_MAX/n_threads) + constant * i;
+ }
+
+ int i;
+#pragma omp parallel private(i)
+ {
+#pragma omp for
+ for (i = 0; i < n_threads; i++) {
+ int lower_bound_inclusive = i * quotient;
+ int upper_bound_not_inclusive = ((i + 1) * quotient); // note the < in the for loop below,
+ // printf("Lower bound: %d, upper bound: %d\n", lower_bound, upper_bound);
+ for (int j = lower_bound_inclusive; j < upper_bound_not_inclusive; j++) {
+ results[j] = sampler(seeds[i]);
+ }
+ }
+ }
+ for (int j = divisor_multiple; j < n_samples; j++) {
+ results[j] = sampler(seeds[0]);
+ // we can just reuse a seed, this isn't problematic because we are not doing multithreading
+ }
+
+ for (uint64_t i = 0; i < n_threads; i++) {
+ free(seeds[i]);
+ }
+ free(seeds);
+}
/* Get confidence intervals, given a sampler */
// Not in core yet because I'm not sure how much I like the struct
// and the built-in 100k samples
// to do: add n to function parameters and document
+
typedef struct ci_t {
- float low;
- float high;
+ double low;
+ double high;
} ci;
-int compare_doubles(const void* p, const void* q)
+
+static void swp(int i, int j, double xs[])
{
- // https://wikiless.esmailelbob.xyz/wiki/Qsort?lang=en
- double x = *(const double*)p;
- double y = *(const double*)q;
-
- /* Avoid returning x - y, which can cause undefined behaviour
- because of signed integer overflow. */
- if (x < y)
- return -1; // Return -1 if you want ascending, 1 if you want descending order.
- else if (x > y)
- return 1; // Return 1 if you want ascending, -1 if you want descending order.
-
- return 0;
+ double tmp = xs[i];
+ xs[i] = xs[j];
+ xs[j] = tmp;
}
-ci get_90_confidence_interval(double (*sampler)(uint64_t*), uint64_t* seed)
+
+static int partition(int low, int high, double xs[], int length)
{
- int n = 100 * 1000;
- double* samples_array = malloc(n * sizeof(double));
- for (int i = 0; i < n; i++) {
- samples_array[i] = sampler(seed);
+ // To understand this function:
+ // - see the note after gt variable definition
+ // - go to commit 578bfa27 and the scratchpad/ folder in it, which has printfs sprinkled throughout
+ int pivot = low + floor((high - low) / 2);
+ double pivot_value = xs[pivot];
+ swp(pivot, high, xs);
+ int gt = low; /* This pointer will iterate until finding an element which is greater than the pivot. Then it will move elements that are smaller before it--more specifically, it will move elements to its position and then increment. As a result all elements between gt and i will be greater than the pivot. */
+ for (int i = low; i < high; i++) {
+ if (xs[i] < pivot_value) {
+ swp(gt, i, xs);
+ gt++;
+ }
}
- qsort(samples_array, n, sizeof(double), compare_doubles);
+ swp(high, gt, xs);
+ return gt;
+}
+static double quickselect(int k, double xs[], int n)
+{
+ // https://en.wikipedia.org/wiki/Quickselect
+ int low = 0;
+ int high = n - 1;
+ for (;;) {
+ if (low == high) {
+ return xs[low];
+ }
+ int pivot = partition(low, high, xs, n);
+ if (pivot == k) {
+ return xs[pivot];
+ } else if (k < pivot) {
+ high = pivot - 1;
+ } else {
+ low = pivot + 1;
+ }
+ }
+}
+
+ci array_get_ci(ci interval, double* xs, int n)
+{
+
+ int low_k = floor(interval.low * n);
+ int high_k = ceil(interval.high * n);
ci result = {
- .low = samples_array[5000],
- .high = samples_array[94999],
+ .low = quickselect(low_k, xs, n),
+ .high = quickselect(high_k, xs, n),
};
- free(samples_array);
+ return result;
+}
+ci array_get_90_ci(double xs[], int n)
+{
+ return array_get_ci((ci) { .low = 0.05, .high = 0.95 }, xs, n);
+}
+ci sampler_get_ci(ci interval, double (*sampler)(uint64_t*), int n, uint64_t* seed)
+{
+ double* xs = malloc(n * sizeof(double));
+ /*for (int i = 0; i < n; i++) {
+ xs[i] = sampler(seed);
+ }*/
+ sampler_parallel(sampler, xs, 16, n);
+ ci result = array_get_ci(interval, xs, n);
+ free(xs);
+ return result;
+}
+ci sampler_get_90_ci(double (*sampler)(uint64_t*), int n, uint64_t* seed)
+{
+ return sampler_get_ci((ci) { .low = 0.05, .high = 0.95 }, sampler, n, seed);
+}
+
+/* Algebra manipulations */
+// here I discover named structs,
+// which mean that I don't have to be typing
+// struct blah all the time.
+
+#define NORMAL90CONFIDENCE 1.6448536269514727
+
+typedef struct normal_params_t {
+ double mean;
+ double std;
+} normal_params;
+
+normal_params algebra_sum_normals(normal_params a, normal_params b)
+{
+ normal_params result = {
+ .mean = a.mean + b.mean,
+ .std = sqrt((a.std * a.std) + (b.std * b.std)),
+ };
+ return result;
+}
+
+typedef struct lognormal_params_t {
+ double logmean;
+ double logstd;
+} lognormal_params;
+
+lognormal_params algebra_product_lognormals(lognormal_params a, lognormal_params b)
+{
+ lognormal_params result = {
+ .logmean = a.logmean + b.logmean,
+ .logstd = sqrt((a.logstd * a.logstd) + (b.logstd * b.logstd)),
+ };
+ return result;
+}
+
+lognormal_params convert_ci_to_lognormal_params(ci x)
+{
+ double loghigh = logf(x.high);
+ double loglow = logf(x.low);
+ double logmean = (loghigh + loglow) / 2.0;
+ double logstd = (loghigh - loglow) / (2.0 * NORMAL90CONFIDENCE);
+ lognormal_params result = { .logmean = logmean, .logstd = logstd };
+ return result;
+}
+
+ci convert_lognormal_params_to_ci(lognormal_params y)
+{
+ double h = y.logstd * NORMAL90CONFIDENCE;
+ double loghigh = y.logmean + h;
+ double loglow = y.logmean - h;
+ ci result = { .low = exp(loglow), .high = exp(loghigh) };
return result;
}
/* Scaffolding to handle errors */
-// We are building towards sample from an arbitrary cdf
+// We will sample from an arbitrary cdf
// and that operation might fail
// so we build some scaffolding here
+
+#define MAX_ERROR_LENGTH 500
+#define EXIT_ON_ERROR 0
+#define PROCESS_ERROR(error_msg) process_error(error_msg, EXIT_ON_ERROR, __FILE__, __LINE__)
+
struct box {
int empty;
double content;
@@ -148,7 +307,7 @@ struct box inverse_cdf_double(double cdf(double), double p)
}
}
-// Version #2:
+// Version #2:
// - input: (cdf: double => Box(number|error), p)
// - output: Box(number|error)
struct box inverse_cdf_box(struct box cdf_box(double), double p)
@@ -246,111 +405,21 @@ double sampler_cdf_danger(struct box cdf(double), uint64_t* seed)
{
double p = sample_unit_uniform(seed);
struct box result = inverse_cdf_box(cdf, p);
- if(result.empty){
- exit(1);
- }else{
- return result.content;
- }
-}
-
-/* Algebra manipulations */
-// here I discover named structs,
-// which mean that I don't have to be typing
-// struct blah all the time.
-typedef struct normal_params_t {
- double mean;
- double std;
-} normal_params;
-
-normal_params algebra_sum_normals(normal_params a, normal_params b)
-{
- normal_params result = {
- .mean = a.mean + b.mean,
- .std = sqrt((a.std * a.std) + (b.std * b.std)),
- };
- return result;
-}
-
-typedef struct lognormal_params_t {
- double logmean;
- double logstd;
-} lognormal_params;
-
-lognormal_params algebra_product_lognormals(lognormal_params a, lognormal_params b)
-{
- lognormal_params result = {
- .logmean = a.logmean + b.logmean,
- .logstd = sqrt((a.logstd * a.logstd) + (b.logstd * b.logstd)),
- };
- return result;
+ if (result.empty) {
+ exit(1);
+ } else {
+ return result.content;
+ }
}
-lognormal_params convert_ci_to_lognormal_params(ci x)
-{
- double loghigh = logf(x.high);
- double loglow = logf(x.low);
- double logmean = (loghigh + loglow) / 2.0;
- double logstd = (loghigh - loglow) / (2.0 * NORMAL90CONFIDENCE);
- lognormal_params result = { .logmean = logmean, .logstd = logstd };
- return result;
-}
+/* array print: potentially useful for debugging */
-ci convert_lognormal_params_to_ci(lognormal_params y)
+void array_print(double xs[], int n)
{
- double h = y.logstd * NORMAL90CONFIDENCE;
- double loghigh = y.logmean + h;
- double loglow = y.logmean - h;
- ci result = { .low = exp(loglow), .high = exp(loghigh) };
- return result;
-}
-
-/* Parallel sampler */
-void parallel_sampler(double (*sampler)(uint64_t* seed), double* results, int n_threads, int n_samples){
-
- // Division terminology:
- // a = b * quotient + reminder
- // a = (a/b)*b + (a%b)
- // dividend: a
- // divisor: b
- // quotient = a / b
- // reminder = a % b
- // "divisor's multiple" := (a/b)*b
-
- // now, we have n_samples and n_threads
- // to make our life easy, each thread will have a number of samples of: a/b (quotient)
- // and we'll compute the remainder of samples separately
- // to possibly do by Jorge: improve so that the remainder is included in the threads
-
- int quotient = n_samples / n_threads;
- int remainder = n_samples % n_threads;
- int divisor_multiple = quotient * n_threads;
-
- uint64_t** seeds = malloc(n_threads * sizeof(uint64_t*));
- for (uint64_t i = 0; i < n_threads; i++) {
- seeds[i] = malloc(sizeof(uint64_t));
- *seeds[i] = i + 1; // xorshift can't start with 0
+ printf("[");
+ for (int i = 0; i < n - 1; i++) {
+ printf("%f, ", xs[i]);
}
-
- int i;
- #pragma omp parallel private(i)
- {
- #pragma omp for
- for (i = 0; i < n_threads; i++) {
- int lower_bound_inclusive = i * quotient;
- int upper_bound_not_inclusive = ((i+1) * quotient); // note the < in the for loop below,
- // printf("Lower bound: %d, upper bound: %d\n", lower_bound, upper_bound);
- for (int j = lower_bound_inclusive; j < upper_bound_not_inclusive; j++) {
- results[j] = sampler(seeds[i]);
- }
- }
- }
- for(int j=divisor_multiple; j<n_samples; j++){
- results[j] = sampler(seeds[0]);
- // we can just reuse a seed, this isn't problematic because we are not doing multithreading
- }
-
- for (uint64_t i = 0; i < n_threads; i++) {
- free(seeds[i]);
- }
- free(seeds);
+ printf("%f", xs[n - 1]);
+ printf("]\n");
}
diff --git a/squiggle.c/squiggle_c/squiggle_more.h b/squiggle.c/squiggle_c/squiggle_more.h
@@ -1,35 +1,20 @@
#ifndef SQUIGGLE_C_EXTRA
-#define SQUIGGLE_C_EXTRA
+#define SQUIGGLE_C_EXTRA
-// Box
-struct box {
- int empty;
- double content;
- char* error_msg;
-};
-
-// Macros to handle errors
-#define MAX_ERROR_LENGTH 500
-#define EXIT_ON_ERROR 0
-#define PROCESS_ERROR(error_msg) process_error(error_msg, EXIT_ON_ERROR, __FILE__, __LINE__)
-struct box process_error(const char* error_msg, int should_exit, char* file, int line);
-
-// Inverse cdf
-struct box inverse_cdf_double(double cdf(double), double p);
-struct box inverse_cdf_box(struct box cdf_box(double), double p);
-
-// Samplers from cdf
-struct box sampler_cdf_double(double cdf(double), uint64_t* seed);
-struct box sampler_cdf_box(struct box cdf(double), uint64_t* seed);
+/* Parallel sampling */
+void sampler_parallel(double (*sampler)(uint64_t* seed), double* results, int n_threads, int n_samples);
-// Get 90% confidence interval
+/* Get 90% confidence interval */
typedef struct ci_t {
- float low;
- float high;
+ double low;
+ double high;
} ci;
-ci get_90_confidence_interval(double (*sampler)(uint64_t*), uint64_t* seed);
+ci array_get_ci(ci interval, double* xs, int n);
+ci array_get_90_ci(double xs[], int n);
+ci sampler_get_ci(ci interval, double (*sampler)(uint64_t*), int n, uint64_t* seed);
+ci sampler_get_90_ci(double (*sampler)(uint64_t*), int n, uint64_t* seed);
-// small algebra manipulations
+/* Algebra manipulations */
typedef struct normal_params_t {
double mean;
@@ -44,8 +29,26 @@ typedef struct lognormal_params_t {
lognormal_params algebra_product_lognormals(lognormal_params a, lognormal_params b);
lognormal_params convert_ci_to_lognormal_params(ci x);
-ci convert_lognormal_params_to_ci(lognormal_params y);
+ci convert_lognormal_params_to_ci(lognormal_params y);
-void parallel_sampler(double (*sampler)(uint64_t* seed), double* results, int n_threads, int n_samples);
+/* Error handling */
+struct box {
+ int empty;
+ double content;
+ char* error_msg;
+};
+#define MAX_ERROR_LENGTH 500
+#define EXIT_ON_ERROR 0
+#define PROCESS_ERROR(error_msg) process_error(error_msg, EXIT_ON_ERROR, __FILE__, __LINE__)
+struct box process_error(const char* error_msg, int should_exit, char* file, int line);
+void array_print(double* array, int length);
+
+/* Inverse cdf */
+struct box inverse_cdf_double(double cdf(double), double p);
+struct box inverse_cdf_box(struct box cdf_box(double), double p);
+
+/* Samplers from cdf */
+struct box sampler_cdf_double(double cdf(double), uint64_t* seed);
+struct box sampler_cdf_box(struct box cdf(double), uint64_t* seed);
#endif