squiggle.c

Self-contained Monte Carlo estimation in C99
Log | Files | Refs | README

commit 774d54ed817d1bdc32028a9e4ca1cab5a458ee4d
parent df2a563e395da972737285319130567f92eb5002
Author: NunoSempere <nuno.sempere@protonmail.com>
Date:   Sat, 24 Feb 2024 23:33:09 -0300

very small division tweaks

Diffstat:
MROADMAP.md | 1+
Msquiggle.c | 4++--
2 files changed, 3 insertions(+), 2 deletions(-)

diff --git a/ROADMAP.md b/ROADMAP.md @@ -8,6 +8,7 @@ - [x] Give examples of new functions - [x] Reference commit with cdf functions, even though deleted - [ ] Post on suckless subreddit +- [ ] Look into <https://lite.duckduckgo.com/html/> instead? - [ ] Drive in a few more real-life applications - [ ] US election modelling? - [ ] Look into using size_t instead of int for sample numbers diff --git a/squiggle.c b/squiggle.c @@ -50,7 +50,7 @@ double sample_unit_normal(uint64_t* seed) // // See: <https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform> double u1 = sample_unit_uniform(seed); double u2 = sample_unit_uniform(seed); - double z = sqrt(-2.0 * log(u1)) * sin(2 * PI * u2); + double z = sqrt(-2.0 * log(u1)) * sin(2.0 * PI * u2); return z; } @@ -90,7 +90,7 @@ double sample_normal_from_90_ci(double low, double high, uint64_t* seed) // 5. If we want a 90% confidence interval from high to low, // we can set mean = (high + low)/2; the midpoint, and L = high-low, // Normal([high + low]/2, [high - low]/(2 * 1.6448536269514722)) - double mean = (high + low) / 2.0; + double mean = (high + low) * 0.5; double std = (high - low) / (2.0 * NORMAL90CONFIDENCE); return sample_normal(mean, std, seed); }