commit 1d89eb6231aa02415e2d8e906d6ee929d54e7366
parent 199e76bdfb061bed4ec0ed1705c2ec0f6780fa41
Author: NunoSempere <nuno.sempere@protonmail.com>
Date: Sat, 20 Jan 2024 14:30:20 +0100
formatting pass, upkeep
Diffstat:
6 files changed, 190 insertions(+), 183 deletions(-)
diff --git a/examples/core/03_gcc_nested_function/example.c b/examples/core/03_gcc_nested_function/example.c
@@ -15,8 +15,16 @@ int main()
int n_dists = 4;
// These are nested functions. They will not compile without gcc.
- double sample_0(uint64_t * seed) { UNUSED(seed); return 0; }
- double sample_1(uint64_t * seed) { UNUSED(seed); return 1; }
+ double sample_0(uint64_t * seed)
+ {
+ UNUSED(seed);
+ return 0;
+ }
+ double sample_1(uint64_t * seed)
+ {
+ UNUSED(seed);
+ return 1;
+ }
double sample_few(uint64_t * seed) { return sample_to(1, 3, seed); }
double sample_many(uint64_t * seed) { return sample_to(2, 10, seed); }
diff --git a/examples/core/06_dissolving_fermi_paradox/example b/examples/core/06_dissolving_fermi_paradox/example
Binary files differ.
diff --git a/examples/core/06_dissolving_fermi_paradox/example.c b/examples/core/06_dissolving_fermi_paradox/example.c
@@ -0,0 +1,147 @@
+#include "../../../squiggle.h"
+#include <math.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <stdlib.h>
+
+double sample_loguniform(double a, double b, uint64_t* seed)
+{
+ return exp(sample_uniform(log(a), log(b), seed));
+}
+
+int main()
+{
+ // Replicate <https://arxiv.org/pdf/1806.02404.pdf>, and in particular the red line in page 11.
+ // Could also be interesting to just produce and save many samples.
+
+ // set randomness seed
+ uint64_t* seed = malloc(sizeof(uint64_t));
+ *seed = UINT64_MAX / 64; // xorshift can't start with a seed of 0
+
+ double sample_fermi_naive(uint64_t * seed)
+ {
+ double rate_of_star_formation = sample_loguniform(1, 100, seed);
+ double fraction_of_stars_with_planets = sample_loguniform(0.1, 1, seed);
+ double number_of_habitable_planets_per_star_system = sample_loguniform(0.1, 1, seed);
+ double rate_of_life_formation_in_habitable_planets = sample_lognormal(1, 50, seed);
+ double fraction_of_habitable_planets_in_which_any_life_appears = -expm1(-rate_of_life_formation_in_habitable_planets);
+ // double fraction_of_habitable_planets_in_which_any_life_appears = 1-exp(-rate_of_life_formation_in_habitable_planets);
+ // but with more precision
+ double fraction_of_planets_with_life_in_which_intelligent_life_appears = sample_loguniform(0.001, 1, seed);
+ double fraction_of_intelligent_planets_which_are_detectable_as_such = sample_loguniform(0.01, 1, seed);
+ double longevity_of_detectable_civilizations = sample_loguniform(100, 10000000000, seed);
+
+ // printf(" rate_of_star_formation = %lf\n", rate_of_star_formation);
+ // printf(" fraction_of_stars_with_planets = %lf\n", fraction_of_stars_with_planets);
+ // printf(" number_of_habitable_planets_per_star_system = %lf\n", number_of_habitable_planets_per_star_system);
+ // printf(" rate_of_life_formation_in_habitable_planets = %.16lf\n", rate_of_life_formation_in_habitable_planets);
+ // printf(" fraction_of_habitable_planets_in_which_any_life_appears = %lf\n", fraction_of_habitable_planets_in_which_any_life_appears);
+ // printf(" fraction_of_planets_with_life_in_which_intelligent_life_appears = %lf\n", fraction_of_planets_with_life_in_which_intelligent_life_appears);
+ // printf(" fraction_of_intelligent_planets_which_are_detectable_as_such = %lf\n", fraction_of_intelligent_planets_which_are_detectable_as_such);
+ // printf(" longevity_of_detectable_civilizations = %lf\n", longevity_of_detectable_civilizations);
+
+ // Expected number of civilizations in the Milky way;
+ // see footnote 3 (p. 5)
+ double n = rate_of_star_formation * fraction_of_stars_with_planets * number_of_habitable_planets_per_star_system * fraction_of_habitable_planets_in_which_any_life_appears * fraction_of_planets_with_life_in_which_intelligent_life_appears * fraction_of_intelligent_planets_which_are_detectable_as_such * longevity_of_detectable_civilizations;
+
+ return n;
+ }
+
+ double sample_fermi_paradox_naive(uint64_t * seed)
+ {
+ double n = sample_fermi_naive(seed);
+ return ((n > 1) ? 1 : 0);
+ }
+
+ double n = 1000000;
+ double naive_fermi_proportion = 0;
+ for (int i = 0; i < n; i++) {
+ double result = sample_fermi_paradox_naive(seed);
+ // printf("result: %lf\n", result);
+ naive_fermi_proportion += result;
+ }
+ printf("Naïve %% that we are not alone: %lf\n", naive_fermi_proportion / n);
+
+ // Thinking in log space
+ double sample_fermi_logspace(uint64_t * seed)
+ {
+ double log_rate_of_star_formation = sample_uniform(log(1), log(100), seed);
+ double log_fraction_of_stars_with_planets = sample_uniform(log(0.1), log(1), seed);
+ double log_number_of_habitable_planets_per_star_system = sample_uniform(log(0.1), log(1), seed);
+ double log_fraction_of_planets_with_life_in_which_intelligent_life_appears = sample_uniform(log(0.001), log(1), seed);
+ double log_fraction_of_intelligent_planets_which_are_detectable_as_such = sample_uniform(log(0.01), log(1), seed);
+ double log_longevity_of_detectable_civilizations = sample_uniform(log(100), log(10000000000), seed);
+
+ // printf(" log_rate_of_star_formation = %lf\n", log_rate_of_star_formation);
+ // printf(" log_fraction_of_stars_with_planets = %lf\n", log_fraction_of_stars_with_planets);
+ // printf(" log_number_of_habitable_planets_per_star_system = %lf\n", log_number_of_habitable_planets_per_star_system);
+ // printf(" log_fraction_of_planets_with_life_in_which_intelligent_life_appears = %lf\n", log_fraction_of_planets_with_life_in_which_intelligent_life_appears);
+ // printf(" log_fraction_of_intelligent_planets_which_are_detectable_as_such = %lf\n", log_fraction_of_intelligent_planets_which_are_detectable_as_such);
+ // printf(" log_longevity_of_detectable_civilizations = %lf\n", log_longevity_of_detectable_civilizations);
+
+ double log_n1 = log_rate_of_star_formation + log_fraction_of_stars_with_planets + log_number_of_habitable_planets_per_star_system + log_fraction_of_planets_with_life_in_which_intelligent_life_appears + log_fraction_of_intelligent_planets_which_are_detectable_as_such + log_longevity_of_detectable_civilizations;
+ // printf("first part of calculation: %lf\n", log_n1);
+
+ /* Consider fraction_of_habitable_planets_in_which_any_life_appears separately.
+ Imprecisely, we could do:
+
+ double rate_of_life_formation_in_habitable_planets = sample_lognormal(1, 50, seed);
+ double fraction_of_habitable_planets_in_which_any_life_appears = 1- exp(-rate_of_life_formation_in_habitable_planets);
+ double log_fraction_of_habitable_planets_in_which_any_life_appears = log(1-fraction_of_habitable_planets_in_which_any_life_appears);
+ double n = exp(log_n1) * fraction_of_habitable_planets_in_which_any_life_appears;
+ // or:
+ double n2 = exp(log_n1 + log(fraction_of_habitable_planets_in_which_any_life_appears))
+
+ However, we lose all precision here.
+
+ Now, say
+ a = underlying normal
+ b = rate_of_life_formation_in_habitable_planets = exp(underlying normal)
+ c = 1 - exp(-b) = fraction_of_habitable_planets_in_which_any_life_appears
+ d = log(c)
+
+ Now, is there some way we can d more efficiently/precisely?
+ Turns out there is!
+
+ Looking at the Taylor expansion for c = 1 - exp(-b), it's b - b^2/2 + b^3/6 - x^b/24, etc.
+ // https://www.wolframalpha.com/input?i=1-exp%28-x%29
+ When b ~ 0 (as is often the case), this is close to b.
+
+ But now, if b ~ 0
+ c ~ b
+ and d = log(c) ~ log(b) = log(exp(a)) = a
+ */
+ double log_rate_of_life_formation_in_habitable_planets = sample_normal(1, 50, seed);
+ // printf("log_rate_of_life_formation_in_habitable_planets: %lf\n", log_rate_of_life_formation_in_habitable_planets);
+
+ double log_fraction_of_habitable_planets_in_which_any_life_appears;
+ if (log_rate_of_life_formation_in_habitable_planets < -32) {
+ log_fraction_of_habitable_planets_in_which_any_life_appears = log_rate_of_life_formation_in_habitable_planets;
+ } else {
+ double rate_of_life_formation_in_habitable_planets = exp(log_rate_of_life_formation_in_habitable_planets);
+ double fraction_of_habitable_planets_in_which_any_life_appears = -expm1(-rate_of_life_formation_in_habitable_planets);
+ log_fraction_of_habitable_planets_in_which_any_life_appears = log(fraction_of_habitable_planets_in_which_any_life_appears);
+ }
+ // printf(" log_fraction_of_habitable_planets_in_which_any_life_appears: %lf\n", log_fraction_of_habitable_planets_in_which_any_life_appears);
+
+ double log_n = log_n1 + log_fraction_of_habitable_planets_in_which_any_life_appears;
+
+ return log_n;
+ }
+
+ double sample_fermi_paradox_logspace(uint64_t * seed)
+ {
+ double n = sample_fermi_logspace(seed);
+ return ((n > 0) ? 1 : 0);
+ }
+
+ double logspace_fermi_proportion = 0;
+ for (int i = 0; i < n; i++) {
+ double result = sample_fermi_paradox_logspace(seed);
+ // printf("result: %lf\n", result);
+ logspace_fermi_proportion += result;
+ }
+ printf("Using more accurate logspace computations, %% that we are not alone: %lf\n", logspace_fermi_proportion / n);
+
+ free(seed);
+}
diff --git a/examples/core/06_dissolving_fermi_paradox/scratchpad.c b/examples/core/06_dissolving_fermi_paradox/scratchpad.c
@@ -1,157 +0,0 @@
-#include "../squiggle.h"
-// #include "../squiggle_more.h"
-#include <math.h>
-#include <stdint.h>
-#include <stdio.h>
-#include <stdlib.h>
-
-double sample_loguniform(double a, double b, uint64_t* seed){
- return exp(sample_uniform(log(a), log(b), seed));
-}
-
-int main()
-{
- // Replicate <https://arxiv.org/pdf/1806.02404.pdf>, and in particular the red line in page 11.
- // Could also be interesting to just produce and save many samples.
-
- // set randomness seed
- uint64_t* seed = malloc(sizeof(uint64_t));
- *seed = UINT64_MAX/64; // xorshift can't start with a seed of 0
-
- double sample_fermi_naive(uint64_t* seed){
- double rate_of_star_formation = sample_loguniform(1,100, seed);
- double fraction_of_stars_with_planets = sample_loguniform(0.1, 1, seed);
- double number_of_habitable_planets_per_star_system = sample_loguniform(0.1, 1, seed);
- double rate_of_life_formation_in_habitable_planets = sample_lognormal(1, 50, seed);
- double fraction_of_habitable_planets_in_which_any_life_appears = -expm1(-rate_of_life_formation_in_habitable_planets);
- // double fraction_of_habitable_planets_in_which_any_life_appears = 1-exp(-rate_of_life_formation_in_habitable_planets);
- // but with more precision
- double fraction_of_planets_with_life_in_which_intelligent_life_appears = sample_loguniform(0.001, 1, seed);
- double fraction_of_intelligent_planets_which_are_detectable_as_such = sample_loguniform(0.01, 1, seed);
- double longevity_of_detectable_civilizations = sample_loguniform(100, 10000000000, seed);
-
- // printf(" rate_of_star_formation = %lf\n", rate_of_star_formation);
- // printf(" fraction_of_stars_with_planets = %lf\n", fraction_of_stars_with_planets);
- // printf(" number_of_habitable_planets_per_star_system = %lf\n", number_of_habitable_planets_per_star_system);
- // printf(" rate_of_life_formation_in_habitable_planets = %.16lf\n", rate_of_life_formation_in_habitable_planets);
- // printf(" fraction_of_habitable_planets_in_which_any_life_appears = %lf\n", fraction_of_habitable_planets_in_which_any_life_appears);
- // printf(" fraction_of_planets_with_life_in_which_intelligent_life_appears = %lf\n", fraction_of_planets_with_life_in_which_intelligent_life_appears);
- // printf(" fraction_of_intelligent_planets_which_are_detectable_as_such = %lf\n", fraction_of_intelligent_planets_which_are_detectable_as_such);
- // printf(" longevity_of_detectable_civilizations = %lf\n", longevity_of_detectable_civilizations);
-
- // Expected number of civilizations in the Milky way;
- // see footnote 3 (p. 5)
- double n = rate_of_star_formation *
- fraction_of_stars_with_planets *
- number_of_habitable_planets_per_star_system *
- fraction_of_habitable_planets_in_which_any_life_appears *
- fraction_of_planets_with_life_in_which_intelligent_life_appears *
- fraction_of_intelligent_planets_which_are_detectable_as_such *
- longevity_of_detectable_civilizations;
-
- return n;
- }
-
- double sample_fermi_paradox_naive(uint64_t* seed){
- double n = sample_fermi_naive(seed);
- return ((n > 1) ? 1 : 0);
- }
-
- double n = 1000000;
- double naive_fermi_proportion = 0;
- for(int i=0; i<n; i++){
- double result = sample_fermi_paradox_naive(seed);
- // printf("result: %lf\n", result);
- naive_fermi_proportion+=result;
- }
- printf("Naïve %% that we are not alone: %lf\n", naive_fermi_proportion/n);
-
-
- // Thinking in log space
- double sample_fermi_logspace(uint64_t* seed){
- double log_rate_of_star_formation = sample_uniform(log(1), log(100), seed);
- double log_fraction_of_stars_with_planets = sample_uniform(log(0.1), log(1), seed);
- double log_number_of_habitable_planets_per_star_system = sample_uniform(log(0.1), log(1), seed);
- double log_fraction_of_planets_with_life_in_which_intelligent_life_appears = sample_uniform(log(0.001), log(1), seed);
- double log_fraction_of_intelligent_planets_which_are_detectable_as_such = sample_uniform(log(0.01), log(1), seed);
- double log_longevity_of_detectable_civilizations = sample_uniform(log(100), log(10000000000), seed);
-
- // printf(" log_rate_of_star_formation = %lf\n", log_rate_of_star_formation);
- // printf(" log_fraction_of_stars_with_planets = %lf\n", log_fraction_of_stars_with_planets);
- // printf(" log_number_of_habitable_planets_per_star_system = %lf\n", log_number_of_habitable_planets_per_star_system);
- // printf(" log_fraction_of_planets_with_life_in_which_intelligent_life_appears = %lf\n", log_fraction_of_planets_with_life_in_which_intelligent_life_appears);
- // printf(" log_fraction_of_intelligent_planets_which_are_detectable_as_such = %lf\n", log_fraction_of_intelligent_planets_which_are_detectable_as_such);
- // printf(" log_longevity_of_detectable_civilizations = %lf\n", log_longevity_of_detectable_civilizations);
-
- double log_n1 =
- log_rate_of_star_formation +
- log_fraction_of_stars_with_planets +
- log_number_of_habitable_planets_per_star_system +
- log_fraction_of_planets_with_life_in_which_intelligent_life_appears +
- log_fraction_of_intelligent_planets_which_are_detectable_as_such +
- log_longevity_of_detectable_civilizations;
- // printf("first part of calculation: %lf\n", log_n1);
-
- /* Consider fraction_of_habitable_planets_in_which_any_life_appears separately.
- Imprecisely, we could do:
-
- double rate_of_life_formation_in_habitable_planets = sample_lognormal(1, 50, seed);
- double fraction_of_habitable_planets_in_which_any_life_appears = 1- exp(-rate_of_life_formation_in_habitable_planets);
- double log_fraction_of_habitable_planets_in_which_any_life_appears = log(1-fraction_of_habitable_planets_in_which_any_life_appears);
- double n = exp(log_n1) * fraction_of_habitable_planets_in_which_any_life_appears;
- // or:
- double n2 = exp(log_n1 + log(fraction_of_habitable_planets_in_which_any_life_appears))
-
- However, we lose all precision here.
-
- Now, say
- a = underlying normal
- b = rate_of_life_formation_in_habitable_planets = exp(underlying normal)
- c = 1 - exp(-b) = fraction_of_habitable_planets_in_which_any_life_appears
- d = log(c)
-
- Now, is there some way we can d more efficiently/precisely?
- Turns out there is!
-
- Looking at the Taylor expansion for c = 1 - exp(-b), it's b - b^2/2 + b^3/6 - x^b/24, etc.
- // https://www.wolframalpha.com/input?i=1-exp%28-x%29
- When b ~ 0 (as is often the case), this is close to b.
-
- But now, if b ~ 0
- c ~ b
- and d = log(c) ~ log(b) = log(exp(a)) = a
- */
- double log_rate_of_life_formation_in_habitable_planets = sample_normal(1, 50, seed);
- // printf("log_rate_of_life_formation_in_habitable_planets: %lf\n", log_rate_of_life_formation_in_habitable_planets);
-
- double log_fraction_of_habitable_planets_in_which_any_life_appears;
- if(log_rate_of_life_formation_in_habitable_planets < -32){
- log_fraction_of_habitable_planets_in_which_any_life_appears = log_rate_of_life_formation_in_habitable_planets;
- } else{
- double rate_of_life_formation_in_habitable_planets = exp(log_rate_of_life_formation_in_habitable_planets);
- double fraction_of_habitable_planets_in_which_any_life_appears = -expm1(-rate_of_life_formation_in_habitable_planets);
- log_fraction_of_habitable_planets_in_which_any_life_appears = log(fraction_of_habitable_planets_in_which_any_life_appears);
- }
- // printf(" log_fraction_of_habitable_planets_in_which_any_life_appears: %lf\n", log_fraction_of_habitable_planets_in_which_any_life_appears);
-
- double log_n = log_n1 + log_fraction_of_habitable_planets_in_which_any_life_appears;
-
- return log_n;
- }
-
- double sample_fermi_paradox_logspace(uint64_t* seed){
- double n = sample_fermi_logspace(seed);
- return ((n > 0) ? 1 : 0);
- }
-
- double logspace_fermi_proportion = 0;
- for(int i=0; i<n; i++){
- double result = sample_fermi_paradox_logspace(seed);
- // printf("result: %lf\n", result);
- logspace_fermi_proportion+=result;
- }
- printf("Using more accurate logspace computations, %% that we are not alone: %lf\n", logspace_fermi_proportion/n);
- double result2;
-
- free(seed);
-}
diff --git a/scratchpad/scratchpad b/scratchpad/scratchpad
Binary files differ.
diff --git a/scratchpad/scratchpad.c b/scratchpad/scratchpad.c
@@ -1,5 +1,5 @@
#include "../squiggle.h"
-#include "../squiggle_more.h"
+// #include "../squiggle_more.h"
#include <math.h>
#include <stdint.h>
#include <stdio.h>
@@ -7,16 +7,18 @@
double sample_loguniform(double a, double b, uint64_t* seed){
return exp(sample_uniform(log(a), log(b), seed));
-
}
int main()
{
+ // Replicate <https://arxiv.org/pdf/1806.02404.pdf>, and in particular the red line in page 11.
+ // Could also be interesting to just produce and save many samples.
+
// set randomness seed
uint64_t* seed = malloc(sizeof(uint64_t));
*seed = UINT64_MAX/64; // xorshift can't start with a seed of 0
- double fermi_naive(uint64_t* seed){
+ double sample_fermi_naive(uint64_t* seed){
double rate_of_star_formation = sample_loguniform(1,100, seed);
double fraction_of_stars_with_planets = sample_loguniform(0.1, 1, seed);
double number_of_habitable_planets_per_star_system = sample_loguniform(0.1, 1, seed);
@@ -50,21 +52,23 @@ int main()
return n;
}
- double fermi_paradox_naive(uint64_t* seed){
- double n = fermi_naive(seed);
- return (n > 1 ? 1 : 0);
+ double sample_fermi_paradox_naive(uint64_t* seed){
+ double n = sample_fermi_naive(seed);
+ return ((n > 1) ? 1 : 0);
}
- double result;
- for(int i=0; i<1000; i++){
- result = fermi_naive(seed);
- printf("result from fermi_naive: %lf\n", result);
- printf("\n\n");
+ double n = 1000000;
+ double naive_fermi_proportion = 0;
+ for(int i=0; i<n; i++){
+ double result = sample_fermi_paradox_naive(seed);
+ // printf("result: %lf\n", result);
+ naive_fermi_proportion+=result;
}
- printf("result from naïve implementation: %lf\n", result);
+ printf("Naïve %% that we are not alone: %lf\n", naive_fermi_proportion/n);
+
// Thinking in log space
- double fermi_logspace(uint64_t* seed){
+ double sample_fermi_logspace(uint64_t* seed){
double log_rate_of_star_formation = sample_uniform(log(1), log(100), seed);
double log_fraction_of_stars_with_planets = sample_uniform(log(0.1), log(1), seed);
double log_number_of_habitable_planets_per_star_system = sample_uniform(log(0.1), log(1), seed);
@@ -86,7 +90,7 @@ int main()
log_fraction_of_planets_with_life_in_which_intelligent_life_appears +
log_fraction_of_intelligent_planets_which_are_detectable_as_such +
log_longevity_of_detectable_civilizations;
- printf("first part of calculation: %lf\n", log_n1);
+ // printf("first part of calculation: %lf\n", log_n1);
/* Consider fraction_of_habitable_planets_in_which_any_life_appears separately.
Imprecisely, we could do:
@@ -110,14 +114,15 @@ int main()
Turns out there is!
Looking at the Taylor expansion for c = 1 - exp(-b), it's b - b^2/2 + b^3/6 - x^b/24, etc.
- When b ~ 0 (as it is), this is close to b.
+ // https://www.wolframalpha.com/input?i=1-exp%28-x%29
+ When b ~ 0 (as is often the case), this is close to b.
But now, if b ~ 0
c ~ b
and d = log(c) ~ log(b) = log(exp(a)) = a
*/
double log_rate_of_life_formation_in_habitable_planets = sample_normal(1, 50, seed);
- printf("log_rate_of_life_formation_in_habitable_planets: %lf\n", log_rate_of_life_formation_in_habitable_planets);
+ // printf("log_rate_of_life_formation_in_habitable_planets: %lf\n", log_rate_of_life_formation_in_habitable_planets);
double log_fraction_of_habitable_planets_in_which_any_life_appears;
if(log_rate_of_life_formation_in_habitable_planets < -32){
@@ -127,22 +132,26 @@ int main()
double fraction_of_habitable_planets_in_which_any_life_appears = -expm1(-rate_of_life_formation_in_habitable_planets);
log_fraction_of_habitable_planets_in_which_any_life_appears = log(fraction_of_habitable_planets_in_which_any_life_appears);
}
- printf(" log_fraction_of_habitable_planets_in_which_any_life_appears: %lf\n", log_fraction_of_habitable_planets_in_which_any_life_appears);
+ // printf(" log_fraction_of_habitable_planets_in_which_any_life_appears: %lf\n", log_fraction_of_habitable_planets_in_which_any_life_appears);
double log_n = log_n1 + log_fraction_of_habitable_planets_in_which_any_life_appears;
return log_n;
}
- double result2;
+ double sample_fermi_paradox_logspace(uint64_t* seed){
+ double n = sample_fermi_logspace(seed);
+ return ((n > 0) ? 1 : 0);
+ }
- /*
- for(int i=0; i<1000; i++){
- result2 = fermi_logspace(seed);
- printf("result from logspace implementation: %lf.2\n", result2);
- printf("\n\n");
+ double logspace_fermi_proportion = 0;
+ for(int i=0; i<n; i++){
+ double result = sample_fermi_paradox_logspace(seed);
+ // printf("result: %lf\n", result);
+ logspace_fermi_proportion+=result;
}
- */
+ printf("Using more accurate logspace computations, %% that we are not alone: %lf\n", logspace_fermi_proportion/n);
+ double result2;
free(seed);
}