time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

distributions.md (22036B)


      1 ## Distributions
      2 
      3 
      4 ### jStat.beta( alpha, beta )
      5 
      6 #### jStat.beta.pdf( x, alpha, beta )
      7 
      8 Returns the value of `x` in the Beta distribution with parameters `alpha` and `beta`.
      9 
     10 #### jStat.beta.cdf( x, alpha, beta )
     11 
     12 Returns the value of `x` in the cdf for the Beta distribution with parameters `alpha` and `beta`.
     13 
     14 #### jStat.beta.inv( p, alpha, beta )
     15 
     16 Returns the value of `p` in the inverse of the cdf for the Beta distribution with parameters `alpha` and `beta`.
     17 
     18 #### jStat.beta.mean( alpha, beta )
     19 
     20 Returns the mean of the Beta distribution with parameters `alpha` and `beta`.
     21 
     22 #### jStat.beta.median( alpha, beta )
     23 
     24 Returns the median of the Beta distribution with parameters `alpha` and `beta`.
     25 
     26 #### jStat.beta.mode( alpha, beta )
     27 
     28 Returns the mode of the Beta distribution with parameters `alpha` and `beta`.
     29 
     30 #### jStat.beta.sample( alpha, beta )
     31 
     32 Returns a random number whose distribution is the Beta distribution with parameters `alpha` and `beta`.
     33 
     34 #### jStat.beta.variance( alpha, beta )
     35 
     36 Returns the variance of the Beta distribution with parameters `alpha` and `beta`.
     37 
     38 ### jStat.centralF( df1, df2 )
     39 
     40 The F Distrbution is used frequently in analyses of variance. The distribution is parameterized by two degrees of freedom (`df1` and `df2`). It is defined continuously on x in [0, infinity).
     41 
     42 In all cases, `df1` is the "numerator degrees of freedom" and `df2` is the "denominator degrees of freedom", which parameterize the distribtuion.
     43 
     44 #### jStat.centralF.pdf( x, df1, df2 )
     45 
     46 Given `x` in the range [0, infinity), returns the probability density of the (central) F distribution at `x`.
     47 
     48 This function corresponds to the `df(x, df1, df2)` function in R.
     49 
     50 #### jStat.centralF.cdf( x, df1, df2 )
     51 
     52 Given x in the range [0, infinity), returns the cumulative probability density of the central F distribution. That is, `jStat.centralF.cdf(2.5, 10, 20)` will return the probability that a number randomly selected from the central F distribution with `df1 = 10` and `df2 = 20` will be less than 2.5.
     53 
     54 This function corresponds to the `pf(q, df1, df2)` function in R.
     55 
     56 #### jStat.centralF.inv( p, df1, df2 )
     57 
     58 Given `p` in [0, 1), returns the value of x for which the cumulative probability density of the central F distribution is p. That is, `jStat.centralF.inv(p, df1, df2) = x` if and only if `jStat.centralF.inv(x, df1, df2) = p`.
     59 
     60 This function corresponds to the `qf(p, df1, df2)` function in R.
     61 
     62 #### jStat.centralF.mean( df1, df2 )
     63 
     64 Returns the mean of the (Central) F distribution.
     65 
     66 #### jStat.centralF.mode( df1, df2 )
     67 
     68 Returns the mode of the (Central) F distribution.
     69 
     70 #### jStat.centralF.sample( df1, df2 )
     71 
     72 Returns a random number whose distribution is the (Central) F distribution.
     73 
     74 This function corresponds to the `rf(n, df1, df2)` function in R.
     75 
     76 #### jStat.centralF.variance( df1, df2 )
     77 
     78 Returns the variance of the (Central) F distribution.
     79 
     80 ### jStat.cauchy( local, scale )
     81 
     82 #### jStat.cauchy.pdf( x, local, scale )
     83 
     84 Returns the value of `x` in the pdf of the Cauchy distribution with a location (median) of `local` and scale factor of `scale`.
     85 
     86 #### jStat.cauchy.cdf( x, local, scale )
     87 
     88 Returns the value of `x` in the cdf of the Cauchy distribution with a location (median) of `local` and scale factor of `scale`.
     89 
     90 #### jStat.cauchy.inv( p, local, scale )
     91 
     92 Returns the value of `p` in the inverse of the cdf for the Cauchy distribution with a location (median) of `local` and scale factor of `scale`.
     93 
     94 #### jStat.cauchy.median( local, scale )
     95 
     96 Returns the value of the median for the Cauchy distribution with a location (median) of `local` and scale factor of `scale`.
     97 
     98 #### jStat.cauchy.mode( local, scale )
     99 
    100 Returns the value of the mode for the Cauchy distribution with a location (median) of `local` and scale factor of `scale`.
    101 
    102 #### jStat.cauchy.sample( local, scale )
    103 
    104 Returns a random number whose distribution is the Cauchy distribution with a location (median) of `local` and scale factor of `scale`.
    105 
    106 #### jStat.cauchy.variance( local, scale )
    107 
    108 Returns the value of the variance for the Cauchy distribution with a location (median) of `local` and scale factor of `scale`.
    109 
    110 ### jStat.chisquare( dof )
    111 
    112 #### jStat.chisquare.pdf( x, dof )
    113 
    114 Returns the value of `x` in the pdf of the Chi Square distribution with `dof` degrees of freedom.
    115 
    116 #### jStat.chisquare.cdf( x, dof )
    117 
    118 Returns the value of `x` in the cdf of the Chi Square distribution with `dof` degrees of freedom.
    119 
    120 #### jStat.chisquare.inv( p, dof )
    121 
    122 Returns the value of `x` in the inverse of the cdf for the Chi Square distribution with `dof` degrees of freedom.
    123 
    124 #### jStat.chisquare.mean( dof )
    125 
    126 Returns the value of the mean for the Chi Square distribution with `dof` degrees of freedom.
    127 
    128 #### jStat.chisquare.median( dof )
    129 
    130 Returns the value of the median for the Chi Square distribution with `dof` degrees of freedom.
    131 
    132 #### jStat.chisquare.mode( dof )
    133 
    134 Returns the value of the mode for the Chi Square distribution with `dof` degrees of freedom.
    135 
    136 #### jStat.chisquare.sample( dof )
    137 
    138 Returns a random number whose distribution is the Chi Square distribution with `dof` degrees of freedom.
    139 
    140 #### jStat.chisquare.variance( dof )
    141 
    142 Returns the value of the variance for the Chi Square distribution with `dof` degrees of freedom.
    143 
    144 
    145 ### jStat.exponential( rate )
    146 
    147 #### jStat.exponential.pdf( x, rate )
    148 
    149 Returns the value of `x` in the pdf of the Exponential distribution with the parameter `rate` (lambda).
    150 
    151 #### jStat.exponential.cdf( x, rate )
    152 
    153 Returns the value of `x` in the cdf of the Exponential distribution with the parameter `rate` (lambda).
    154 
    155 #### jStat.exponential.inv( p, rate )
    156 
    157 Returns the value of `p` in the inverse of the cdf for the Exponential distribution with the parameter `rate` (lambda).
    158 
    159 #### jStat.exponential.mean( rate )
    160 
    161 Returns the value of the mean for the Exponential distribution with the parameter `rate` (lambda).
    162 
    163 #### jStat.exponential.median( rate )
    164 
    165 Returns the value of the median for the Exponential distribution with the parameter `rate` (lambda)
    166 
    167 #### jStat.exponential.mode( rate )
    168 
    169 Returns the value of the mode for the Exponential distribution with the parameter `rate` (lambda).
    170 
    171 #### jStat.exponential.sample( rate )
    172 
    173 Returns a random number whose distribution is the Exponential distribution with the parameter `rate` (lambda).
    174 
    175 #### jStat.exponential.variance( rate )
    176 
    177 Returns the value of the variance for the Exponential distribution with the parameter `rate` (lambda).
    178 
    179 ### jStat.gamma( shape, scale )
    180 
    181 #### jStat.gamma.pdf( x, shape, scale )
    182 
    183 Returns the value of `x` in the pdf of the Gamma distribution with the parameters `shape` (k) and `scale` (theta). Notice that if using the alpha beta convention, `scale = 1/beta`.
    184 
    185 #### jStat.gamma.cdf( x, shape, scale )
    186 
    187 Returns the value of `x` in the cdf of the Gamma distribution with the parameters `shape` (k) and `scale` (theta). Notice that if using the alpha beta convention, `scale = 1/beta`.
    188 
    189 This function is checked against R's `pgamma` function.
    190 
    191 #### jStat.gamma.inv( p, shape, scale )
    192 
    193 Returns the value of `p` in the inverse of the cdf for the Gamma distribution with the parameters `shape` (k) and `scale` (theta). Notice that if using the alpha beta convention, `scale = 1/beta`.
    194 
    195 This function is checked against R's `qgamma` function.
    196 
    197 #### jStat.gamma.mean( shape, scale )
    198 
    199 Returns the value of the mean for the Gamma distribution with the parameters `shape` (k) and `scale` (theta). Notice that if using the alpha beta convention, `scale = 1/beta`.
    200 
    201 #### jStat.gamma.mode( shape, scale )
    202 
    203 Returns the value of the mode for the Gamma distribution with the parameters `shape` (k) and `scale` (theta). Notice that if using the alpha beta convention, `scale = 1/beta`.
    204 
    205 #### jStat.gamma.sample( shape, scale )
    206 
    207 Returns a random number whose distribution is the Gamma distribution with the parameters `shape` (k) and `scale` (theta). Notice that if using the alpha beta convention, `scale = 1/beta`.
    208 
    209 #### jStat.gamma.variance( shape, scale )
    210 
    211 Returns the value of the variance for the Gamma distribution with the parameters `shape` (k) and `scale` (theta). Notice that if using the alpha beta convention, `scale = 1/beta`.
    212 
    213 ### jStat.invgamma( shape, scale )
    214 
    215 #### jStat.invgamma.pdf( x, shape, scale )
    216 
    217 Returns the value of `x` in the pdf of the Inverse-Gamma distribution with parametres `shape` (alpha) and `scale` (beta).
    218 
    219 #### jStat.invgamma.cdf( x, shape, scale )
    220 
    221 Returns the value of `x` in the cdf of the Inverse-Gamma distribution with parametres `shape` (alpha) and `scale` (beta).
    222 
    223 #### jStat.invgamma.inv( p, shape, scale )
    224 
    225 Returns the value of `p` in the inverse of the cdf for the Inverse-Gamma distribution with parametres `shape` (alpha) and `scale` (beta).
    226 
    227 #### jStat.invgamma.mean( shape, scale )
    228 
    229 Returns the value of the mean for the Inverse-Gamma distribution with parametres `shape` (alpha) and `scale` (beta).
    230 
    231 #### jStat.invgamma.mode( shape, scale )
    232 
    233 Returns the value of the mode for the Inverse-Gamma distribution with parametres `shape` (alpha) and `scale` (beta).
    234 
    235 #### jStat.invgamma.sample( shape, scale )
    236 
    237 Returns a random number whose distribution is the Inverse-Gamma distribution with parametres `shape` (alpha) and `scale` (beta).
    238 
    239 #### jStat.invgamma.variance( shape, scale )
    240 
    241 Returns the value of the variance for the Inverse-Gamma distribution with parametres `shape` (alpha) and `scale` (beta).
    242 
    243 ### jStat.kumaraswamy( alpha, beta )
    244 
    245 #### jStat.kumaraswamy.pdf( x, a, b )
    246 
    247 Returns the value of `x` in the pdf of the Kumaraswamy distribution with parameters `a` and `b`.
    248 
    249 #### jStat.kumaraswamy.cdf( x, alpha, beta )
    250 
    251 Returns the value of `x` in the cdf of the Kumaraswamy distribution with parameters `alpha` and `beta`.
    252 
    253 #### jStat.kumaraswamy.inv( p, alpha, beta )
    254 
    255 Returns the value of `p` in the inverse of the pdf for the Kumaraswamy distribution with parametres `alpha` and `beta`.
    256 
    257 This function corresponds to `qkumar(p, alpha, beta)` in R's VGAM package.
    258 
    259 #### jStat.kumaraswamy.mean( alpha, beta )
    260 
    261 Returns the value of the mean of the Kumaraswamy distribution with parameters `alpha` and `beta`.
    262 
    263 #### jStat.kumaraswamy.median( alpha, beta )
    264 
    265 Returns the value of the median of the Kumaraswamy distribution with parameters `alpha` and `beta`.
    266 
    267 #### jStat.kumaraswamy.mode( alpha, beta )
    268 
    269 Returns the value of the mode of the Kumaraswamy distribution with parameters `alpha` and `beta`.
    270 
    271 #### jStat.kumaraswamy.variance( alpha, beta )
    272 
    273 Returns the value of the variance of the Kumaraswamy distribution with parameters `alpha` and `beta`.
    274 
    275 ### jStat.lognormal( mu, sigma )
    276 
    277 #### jStat.lognormal.pdf( x, mu, sigma )
    278 
    279 Returns the value of `x` in the pdf of the Log-normal distribution with paramters `mu` (mean) and `sigma` (standard deviation).
    280 
    281 #### jStat.lognormal.cdf( x, mu, sigma )
    282 
    283 Returns the value of `x` in the cdf of the Log-normal distribution with paramters `mu` (mean) and `sigma` (standard deviation).
    284 
    285 #### jStat.lognormal.inv( p, mu, sigma )
    286 
    287 Returns the value of `x` in the inverse of the cdf for the Log-normal distribution with paramters `mu` (mean of the Normal distribution) and `sigma` (standard deviation of the Normal distribution).
    288 
    289 #### jStat.lognormal.mean( mu, sigma )
    290 
    291 Returns the value of the mean for the Log-normal distribution with paramters `mu` (mean of the Normal distribution) and `sigma` (standard deviation of the Normal distribution).
    292 
    293 #### jStat.lognormal.median( mu, sigma )
    294 
    295 Returns the value of the median for the Log-normal distribution with paramters `mu` (mean of the Normal distribution) and `sigma` (standard deviation of the Normal distribution).
    296 
    297 #### jStat.lognormal.mode( mu, sigma )
    298 
    299 Returns the value of the mode for the Log-normal distribution with paramters `mu` (mean of the Normal distribution) and `sigma` (standard deviation of the Normal distribution).
    300 
    301 #### jStat.lognormal.sample( mu, sigma )
    302 
    303 Returns a random number whose distribution is the Log-normal distribution with paramters `mu` (mean of the Normal distribution) and `sigma` (standard deviation of the Normal distribution).
    304 
    305 #### jStat.lognormal.variance( mu, sigma )
    306 
    307 Returns the value of the variance for the Log-normal distribution with paramters `mu` (mean of the Normal distribution) and `sigma` (standard deviation of the Normal distribution).
    308 
    309 ### jStat.normal( mean, std )
    310 
    311 #### jStat.normal.pdf( x, mean, std )
    312 
    313 Returns the value of `x` in the pdf of the Normal distribution with parameters `mean` and `std` (standard deviation).
    314 
    315 #### jStat.normal.cdf( x, mean, std )
    316 
    317 Returns the value of `x` in the cdf of the Normal distribution with parameters `mean` and `std` (standard deviation).
    318 
    319 #### jStat.normal.inv( p, mean, std )
    320 
    321 Returns the value of `p` in the inverse cdf for the Normal distribution with parameters `mean` and `std` (standard deviation).
    322 
    323 #### jStat.normal.mean( mean, std )
    324 
    325 Returns the value of the mean for the Normal distribution with parameters `mean` and `std` (standard deviation).
    326 
    327 #### jStat.normal.median( mean, std )
    328 
    329 Returns the value of the median for the Normal distribution with parameters `mean` and `std` (standard deviation).
    330 
    331 #### jStat.normal.mode( mean, std )
    332 
    333 Returns the value of the mode for the Normal distribution with parameters `mean` and `std` (standard deviation).
    334 
    335 #### jStat.normal.sample( mean, std )
    336 
    337 Returns a random number whose distribution is the Normal distribution with parameters `mean` and `std` (standard deviation).
    338 
    339 #### jStat.normal.variance( mean, std )
    340 
    341 Returns the value of the variance for the Normal distribution with parameters `mean` and `std` (standard deviation).
    342 
    343 ### jStat.pareto( scale, shape )
    344 
    345 #### jStat.pareto.pdf( x, scale, shape )
    346 
    347 Returns the value of `x` in the pdf of the Pareto distribution with parameters `scale` (x<sub>m</sub>) and `shape` (alpha).
    348 
    349 #### jStat.pareto.inv( p, scale, shape )
    350 
    351 Returns the inverse of the Pareto distribution with probability `p`, `scale`, `shape`.
    352 
    353 This coresponds to `qpareto(p, scale, shape)` in R's VGAM package, and generally corresponds to the `q`<dist> function pattern in R.
    354 
    355 #### jStat.pareto.cdf( x, scale, shape )
    356 
    357 Returns the value of `x` in the cdf of the Pareto distribution with parameters `scale` (x<sub>m</sub>) and `shape` (alpha).
    358 
    359 #### jStat.pareto.mean( scale, shape )
    360 
    361 Returns the value of the mean of the Pareto distribution with parameters `scale` (x<sub>m</sub>) and `shape` (alpha).
    362 
    363 #### jStat.pareto.median( scale, shape )
    364 
    365 Returns the value of the median of the Pareto distribution with parameters `scale` (x<sub>m</sub>) and `shape` (alpha).
    366 
    367 #### jStat.pareto.mode( scale, shape )
    368 
    369 Returns the value of the mode of the Pareto distribution with parameters `scale` (x<sub>m</sub>) and `shape` (alpha).
    370 
    371 #### jStat.pareto.variance( scale, shape )
    372 
    373 Returns the value of the variance of the Pareto distribution with parameters `scale` (x<sub>m</sub>) and `shape` (alpha).
    374 
    375 ### jStat.studentt( dof )
    376 
    377 #### jStat.studentt.pdf( x, dof )
    378 
    379 Returns the value of `x` in the pdf of the Student's T distribution with `dof` degrees of freedom.
    380 
    381 #### jStat.studentt.cdf( x, dof )
    382 
    383 Returns the value of `x` in the cdf of the Student's T distribution with `dof` degrees of freedom.
    384 
    385 #### jStat.studentt.inv( p, dof )
    386 
    387 Returns the value of `p` in the inverse of the cdf for the Student's T distribution with `dof` degrees of freedom.
    388 
    389 #### jStat.studentt.mean( dof )
    390 
    391 Returns the value of the mean of the Student's T distribution with `dof` degrees of freedom.
    392 
    393 #### jStat.studentt.median( dof )
    394 
    395 Returns the value of the median of the Student's T distribution with `dof` degrees of freedom.
    396 
    397 #### jStat.studentt.mode( dof )
    398 
    399 Returns the value of the mode of the Student's T distribution with `dof` degrees of freedom.
    400 
    401 #### jStat.studentt.sample( dof )
    402 
    403 Returns a random number whose distribution is the Student's T distribution with `dof` degrees of freedom.
    404 
    405 #### jStat.studentt.variance( dof )
    406 
    407 Returns the value of the variance for the Student's T distribution with `dof` degrees of freedom.
    408 
    409 ### jStat.tukey( nmeans, dof )
    410 
    411 #### jStat.tukey.cdf( q, nmeans, dof )
    412 
    413 Returns the value of q in the cdf of the Studentized range distribution with `nmeans` number of groups nmeans and `dof` degrees of freedom.
    414 
    415 #### jStat.tukey.inv( p, nmeans, dof )
    416 
    417 Returns the value of `p` in the inverse of the cdf for the Studentized range distribution with `nmeans` number of groups and `dof` degrees of freedom.
    418 Only accurate to 4 decimal places.
    419 
    420 ### jStat.weibull( scale, shape )
    421 
    422 #### jStat.weibull.pdf( x, scale, shape )
    423 
    424 Returns the value `x` in the pdf for the Weibull distribution with parameters `scale` (lambda) and `shape` (k).
    425 
    426 #### jStat.weibull.cdf( x, scale, shape )
    427 
    428 Returns the value `x` in the cdf for the Weibull distribution with parameters `scale` (lambda) and `shape` (k).
    429 
    430 #### jStat.weibull.inv( p, scale, shape )
    431 
    432 Returns the value of `x` in the inverse of the cdf for the Weibull distribution with parameters `scale` (lambda) and `shape` (k).
    433 
    434 #### jStat.weibull.mean( scale, shape )
    435 
    436 Returns the value of the mean of the Weibull distribution with parameters `scale` (lambda) and `shape` (k).
    437 
    438 #### jStat.weibull.median( scale, shape )
    439 
    440 Returns the value of the median of the Weibull distribution with parameters `scale` (lambda) and `shape` (k).
    441 
    442 #### jStat.weibull.mode( scale, shape )
    443 
    444 Returns the mode of the Weibull distribution with parameters `scale` (lambda) and `shape` (k).
    445 
    446 #### jStat.weibull.sample( scale, shape )
    447 
    448 Returns a random number whose distribution is the Weibull distribution with parameters `scale` (lambda) and `shape` (k).
    449 
    450 #### jStat.weibull.variance( scale, shape )
    451 
    452 Returns the variance of the Weibull distribution with parameters `scale` (lambda) and `shape` (k).
    453 
    454 ### jStat.uniform( a, b )
    455 
    456 #### jStat.uniform.pdf( x, a, b )
    457 
    458 Returns the value of `x` in the pdf of the Uniform distribution from `a` to `b`.
    459 
    460 #### jStat.uniform.cdf( x, a, b )
    461 
    462 Returns the value of `x` in the cdf of the Uniform distribution from `a` to `b`.
    463 
    464 #### jStat.uniform.inv( p, a, b)
    465 
    466 Returns the inverse of the `uniform.cdf` function; i.e. the value of `x` for which `uniform.cdf(x, a, b) == p`.
    467 
    468 #### jStat.uniform.mean( a, b )
    469 
    470 Returns the value of the mean of the Uniform distribution from `a` to `b`.
    471 
    472 #### jStat.uniform.median( a, b )
    473 
    474 Returns the value of the median of the Uniform distribution from `a` to `b`.
    475 
    476 #### jStat.uniform.mode( a, b )
    477 
    478 Returns the value of the mode of the Uniform distribution from `a` to `b`.
    479 
    480 #### jStat.uniform.sample( a, b )
    481 
    482 Returns a random number whose distribution is the Uniform distribution from `a` to `b`.
    483 
    484 #### jStat.uniform.variance( a, b )
    485 
    486 Returns the variance of the Uniform distribution from `a` to `b`.
    487 
    488 ### jStat.binomial
    489 
    490 #### jStat.binomial.pdf( k, n, p )
    491 
    492 Returns the value of `k` in the pdf of the Binomial distribution with parameters `n` and `p`.
    493 
    494 #### jStat.binomial.cdf( k, n, p )
    495 
    496 Returns the value of `k` in the cdf of the Binomial distribution with parameters `n` and `p`.
    497 
    498 ### jStat.negbin
    499 
    500 #### jStat.negbin.pdf( k, r, p )
    501 
    502 Returns the value of `k` in the pdf of the Negative Binomial distribution with parameters `n` and `p`.
    503 
    504 #### jStat.negbin.cdf( x, r, p )
    505 
    506 Returns the value of `x` in the cdf of the Negative Binomial distribution with parameters `n` and `p`.
    507 
    508 ### jStat.hypgeom
    509 
    510 #### jStat.hypgeom.pdf( k, N, m, n )
    511 
    512 Returns the value of `k` in the pdf of the Hypergeometric distribution with parameters `N` (the population size), `m` (the success rate), and `n` (the number of draws).
    513 
    514 #### jStat.hypgeom.cdf( x, N, m, n )
    515 
    516 Returns the value of `x` in the cdf of the Hypergeometric distribution with parameters `N` (the population size), `m` (the success rate), and `n` (the number of draws).
    517 
    518 ### jStat.poisson
    519 
    520 #### jStat.poisson.pdf( k, l )
    521 
    522 Returns the value of `k` in the pdf of the Poisson distribution with parameter `l` (lambda).
    523 
    524 #### jStat.poisson.cdf( x, l )
    525 
    526 Returns the value of `x` in the cdf of the Poisson distribution with parameter `l` (lambda).
    527 
    528 #### jStat.poisson.sample( l )
    529 
    530 Returns a random number whose distribution is the Poisson distribution with rate parameter l (lamda)
    531 
    532 ### jStat.triangular
    533 
    534 #### jStat.triangular.pdf( x, a, b, c )
    535 
    536 Returns the value of `x` in the pdf of the Triangular distribution with the parameters `a`, `b`, and `c`.
    537 
    538 #### jStat.triangular.cdf( x, a, b, c )
    539 
    540 Returns the value of `x` in the cdf of the Triangular distribution with the parameters `a`, `b`, and `c`.
    541 
    542 #### jStat.triangular.mean( a, b, c )
    543 
    544 Returns the value of the mean of the Triangular distribution with the parameters `a`, `b`, and `c`.
    545 
    546 #### jStat.triangular.median( a, b, c )
    547 
    548 Returns the value of the median of the Triangular distribution with the parameters `a`, `b`, and `c`.
    549 
    550 #### jStat.triangular.mode( a, b, c )
    551 
    552 Returns the value of the mode of the Triangular distribution with the parameters `a`, `b`, and `c`.
    553 
    554 #### jStat.triangular.sample( a, b, c )
    555 
    556 Returns a random number whose distribution is the Triangular distribution with the parameters `a`, `b`, and `c`.
    557 
    558 #### jStat.triangular.variance( a, b, c )
    559 
    560 Returns the value of the variance of the Triangular distribution with the parameters `a`, `b`, and `c`.
    561 
    562 ### jStat.arcsine( a, b )
    563 
    564 #### jStat.arcsine.pdf( x, a, b )
    565 
    566 Returns the value of `x` in the pdf of the arcsine distribution from `a` to `b`.
    567 
    568 #### jStat.arcsine.cdf( x, a, b )
    569 
    570 Returns the value of `x` in the cdf of the arcsine distribution from `a` to `b`.
    571 
    572 #### jStat.arcsine.inv(p, a, b)
    573 
    574 Returns the inverse of the `arcsine.cdf` function; i.e. the value of `x` for which `arcsine.cdf(x, a, b) == p`.
    575 
    576 #### jStat.arcsine.mean( a, b )
    577 
    578 Returns the value of the mean of the arcsine distribution from `a` to `b`.
    579 
    580 #### jStat.arcsine.median( a, b )
    581 
    582 Returns the value of the median of the arcsine distribution from `a` to `b`.
    583 
    584 #### jStat.arcsine.mode( a, b )
    585 
    586 Returns the value of the mode of the arcsine distribution from `a` to `b`.
    587 
    588 #### jStat.arcsine.sample( a, b )
    589 
    590 Returns a random number whose distribution is the arcsine distribution from `a` to `b`.
    591 
    592 #### jStat.arcsine.variance( a, b )
    593 
    594 Returns the variance of the Uniform distribution from `a` to `b`.