time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

main.js (5804B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2018 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var isNumberArray = require( '@stdlib/assert/is-number-array' ).primitives;
     24 var isTypedArrayLike = require( '@stdlib/assert/is-typed-array-like' );
     25 var setReadOnly = require( '@stdlib/utils/define-read-only-property' );
     26 var tCDF = require( './../../base/dists/t/cdf' );
     27 var tQuantile = require( './../../base/dists/t/quantile' );
     28 var sqrt = require( '@stdlib/math/base/special/sqrt' );
     29 var abs = require( '@stdlib/math/base/special/abs' );
     30 var pow = require( '@stdlib/math/base/special/pow' );
     31 var mean = require( './../../base/mean' );
     32 var variance = require( './../../base/variance' );
     33 var NINF = require( '@stdlib/constants/float64/ninf' );
     34 var PINF = require( '@stdlib/constants/float64/pinf' );
     35 var validate = require( './validate.js' );
     36 var print = require( './print.js' ); // eslint-disable-line stdlib/no-redeclare
     37 
     38 
     39 // MAIN //
     40 
     41 /**
     42 * Computes a two-sample Student's t test.
     43 *
     44 * @param {NumericArray} x - first data array
     45 * @param {NumericArray} y - second data array
     46 * @param {Options} [options] - function options
     47 * @param {number} [options.alpha=0.05] - significance level
     48 * @param {string} [options.alternative='two-sided'] - alternative hypothesis (`two-sided`, `less` or `greater`)
     49 * @param {number} [options.difference=0] - difference in means under H0
     50 * @param {string} [options.variance='unequal'] - whether variances are `equal` or `unequal` under H0
     51 * @throws {TypeError} x argument has to be a typed array or array of numbers
     52 * @throws {TypeError} y argument has to be a typed array or array of numbers
     53 * @throws {TypeError} options has to be simple object
     54 * @throws {TypeError} alpha option has to be a number primitive
     55 * @throws {RangeError} alpha option has to be a number in the interval `[0,1]`
     56 * @throws {TypeError} alternative option has to be a string primitive
     57 * @throws {Error} alternative option must be `two-sided`, `less` or `greater`
     58 * @throws {TypeError} difference option has to be a number primitive
     59 * @throws {TypeError} variance option has to be a string primitive
     60 * @throws {Error} variance option must be `equal` or `unequal`
     61 * @returns {Object} test result object
     62 */
     63 function ttest2( x, y, options ) {
     64 	var stderr;
     65 	var alpha;
     66 	var xmean;
     67 	var ymean;
     68 	var vars;
     69 	var cint;
     70 	var diff;
     71 	var opts;
     72 	var pval;
     73 	var xvar;
     74 	var yvar;
     75 	var stat;
     76 	var sdx;
     77 	var sdy;
     78 	var alt;
     79 	var err;
     80 	var out;
     81 	var nx;
     82 	var ny;
     83 	var df;
     84 	var v;
     85 
     86 	if ( !isTypedArrayLike( x ) && !isNumberArray( x ) ) {
     87 		throw new TypeError( 'invalid argument. First argument `x` must be a numeric array. Value: `' + x + '`.' );
     88 	}
     89 	if ( !isTypedArrayLike( y ) && !isNumberArray( y ) ) {
     90 		throw new TypeError( 'invalid argument. Second argument `y` must be a numeric array. Value: `' + y + '`.' );
     91 	}
     92 	opts = {};
     93 	if ( options ) {
     94 		err = validate( opts, options );
     95 		if ( err ) {
     96 			throw err;
     97 		}
     98 	}
     99 	diff = opts.difference || 0.0;
    100 	if ( opts.alpha === void 0 ) {
    101 		alpha = 0.05;
    102 	} else {
    103 		alpha = opts.alpha;
    104 	}
    105 	if ( alpha < 0.0 || alpha > 1.0 ) {
    106 		throw new RangeError( 'invalid argument. Option `alpha` must be a number in the range 0 to 1. Value: `' + alpha + '`.' );
    107 	}
    108 	nx = x.length;
    109 	ny = y.length;
    110 
    111 	xvar = variance( nx, 1, x, 1 );
    112 	yvar = variance( ny, 1, y, 1 );
    113 
    114 	vars = opts.variance || 'unequal';
    115 	if ( vars === 'equal' ) {
    116 		df = nx + ny - 2;
    117 		v = ((nx-1) * xvar) + ((ny-1) * yvar);
    118 		v /= df;
    119 		stderr = sqrt( v * ((1/nx) + (1/ny)) );
    120 	}
    121 	else if ( vars === 'unequal' ) {
    122 		sdx = sqrt( xvar/nx );
    123 		sdy = sqrt( yvar/ny );
    124 		stderr = sqrt( (sdx*sdx) + (sdy*sdy) );
    125 		v = pow( sdx, 4 ) / ( nx - 1 );
    126 		v += pow( sdy, 4 ) / ( ny - 1 );
    127 		df = pow( stderr, 4 ) / v;
    128 	}
    129 	else {
    130 		throw new Error( 'Invalid option. `variance` must be either `equal` or `unequal`. Value: `' + vars + '`' );
    131 	}
    132 
    133 	xmean = mean( nx, x, 1 );
    134 	ymean = mean( ny, y, 1 );
    135 	stat = ( xmean - ymean - diff ) / stderr;
    136 
    137 	alt = opts.alternative || 'two-sided';
    138 	switch ( alt ) {
    139 	case 'two-sided':
    140 		pval = 2.0 * tCDF( -abs(stat), df );
    141 		cint = [
    142 			stat - tQuantile( 1.0-(alpha/2.0), df ),
    143 			stat + tQuantile( 1.0-(alpha/2.0), df )
    144 		];
    145 		cint[ 0 ] = diff + (cint[ 0 ] * stderr);
    146 		cint[ 1 ] = diff + (cint[ 1 ] * stderr);
    147 		break;
    148 	case 'greater':
    149 		pval = 1.0 - tCDF( stat, df );
    150 		cint = [ stat - tQuantile( 1.0-alpha, df ), PINF ];
    151 		cint[ 0 ] = diff + (cint[ 0 ] * stderr);
    152 		break;
    153 	case 'less':
    154 		pval = tCDF( stat, df );
    155 		cint = [ NINF, stat + tQuantile( 1.0-alpha, df ) ];
    156 		cint[ 1 ] = diff + (cint[ 1 ] * stderr);
    157 		break;
    158 	default:
    159 		throw new Error( 'Invalid option. `alternative` must be either `two-sided`, `less` or `greater`. Value: `' + alt + '`' );
    160 	}
    161 	out = {};
    162 	setReadOnly( out, 'rejected', pval <= alpha );
    163 	setReadOnly( out, 'alpha', alpha );
    164 	setReadOnly( out, 'pValue', pval );
    165 	setReadOnly( out, 'statistic', stat );
    166 	setReadOnly( out, 'ci', cint );
    167 	setReadOnly( out, 'alternative', alt );
    168 	setReadOnly( out, 'df', df );
    169 	setReadOnly( out, 'method', ( vars === 'equal' ) ? 'Two-sample t-test' : 'Welch two-sample t-test' );
    170 	setReadOnly( out, 'nullValue', diff );
    171 	setReadOnly( out, 'xmean', xmean );
    172 	setReadOnly( out, 'ymean', ymean );
    173 	setReadOnly( out, 'print', print );
    174 	return out;
    175 }
    176 
    177 
    178 // EXPORTS //
    179 
    180 module.exports = ttest2;