time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

smirnov.js (1661B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2018 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var binomcoefln = require( '@stdlib/math/base/special/binomcoefln' );
     24 var floor = require( '@stdlib/math/base/special/floor' );
     25 var exp = require( '@stdlib/math/base/special/exp' );
     26 var ln = require( '@stdlib/math/base/special/ln' );
     27 
     28 
     29 // MAIN //
     30 
     31 /**
     32 * Evaluates the CDF for the one-sided test statistics, i.e., the maximum by which the empirical CDF exceeds / is less than the hypothesized CDF.
     33 *
     34 * @private
     35 * @param {number} d - the argument of the CDF of D_n^+ / D_n^-
     36 * @param {PositiveInteger} n - number of variates
     37 * @returns {number} evaluated CDF, i.e., P( D_n^+ < d )
     38 */
     39 function pKolmogorov1( d, n ) {
     40 	var len;
     41 	var out;
     42 	var tmp;
     43 	var i;
     44 
     45 	if ( d <= 0.0 ) {
     46 		return 0.0;
     47 	}
     48 	if ( d >= 1.0 ) {
     49 		return 1.0;
     50 	}
     51 	len = floor( n * (1.0-d) ) + 1;
     52 	out = 0.0;
     53 	for ( i = 0; i < len; i++ ) {
     54 		tmp = binomcoefln( n, i );
     55 		tmp += ( n - i ) * ln( 1.0 - d - (i/n) );
     56 		tmp += ( i - 1.0 ) * ln( d + (i/n) );
     57 		out += exp( tmp );
     58 	}
     59 	return 1.0 - (d * out);
     60 }
     61 
     62 
     63 // EXPORTS //
     64 
     65 module.exports = pKolmogorov1;