time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

main.js (5695B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2018 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var isTypedArrayLike = require( '@stdlib/assert/is-typed-array-like' );
     24 var isNumber = require( '@stdlib/assert/is-number' );
     25 var isNumberArray = require( '@stdlib/assert/is-number-array' ).primitives;
     26 var setReadOnly = require( '@stdlib/utils/define-read-only-property' );
     27 var isFunction = require( '@stdlib/assert/is-function' );
     28 var isString = require( '@stdlib/assert/is-string' ).isPrimitive;
     29 var isnan = require( '@stdlib/assert/is-nan' );
     30 var max = require( './../../base/max' );
     31 var pKolmogorov1 = require( './smirnov.js' );
     32 var pKolmogorov = require( './marsaglia.js' );
     33 var ascending = require( './ascending.js' );
     34 var subtract = require( './subtract.js' );
     35 var validate = require( './validate.js' );
     36 var getCDF = require( './get_cdf.js' );
     37 var print = require( './print.js' ); // eslint-disable-line stdlib/no-redeclare
     38 
     39 
     40 // FUNCTIONS //
     41 
     42 var slice = Array.prototype.slice;
     43 
     44 
     45 // MAIN //
     46 
     47 /**
     48 * Computes a Kolmogorov-Smirnov goodness-of-fit test.
     49 *
     50 * @param {NumericArray} x - input array holding numeric values
     51 * @param {(Function|string)} y - either a CDF function or a string denoting the name of a distribution
     52 * @param {...number} [params] - distribution parameters passed to reference CDF
     53 * @param {Options} [options] - function options
     54 * @param {number} [options.alpha=0.05] - significance level
     55 * @param {boolean} [options.sorted=false] - boolean indicating if the input array is already in sorted order
     56 * @param {string} [options.alternative="two-sided"] - string indicating whether to conduct two-sided or one-sided hypothesis test (other options: `less`, `greater`)
     57 * @throws {TypeError} argument x has to be a typed array or array of numbers
     58 * @throws {TypeError} argument y has to be a CDF function or string
     59 * @throws {TypeError} options has to be simple object
     60 * @throws {TypeError} alpha option has to be a number primitive
     61 * @throws {RangeError} alpha option has to be a number in the interval `[0,1]`
     62 * @throws {TypeError} alternative option has to be a string primitive
     63 * @throws {Error} alternative option must be `two-sided`, `less` or `greater`
     64 * @throws {TypeError} sorted option has to be a boolean primitive
     65 * @returns {Object} test result object
     66 *
     67 * @example
     68 * var out = kstest( [ 2.0, 1.0, 5.0, -5.0, 3.0, 0.5, 6.0 ], 'normal', 0.0, 1.0 );
     69 * // returns { 'pValue': ~0.015, 'statistic': ~0.556, ... }
     70 */
     71 function kstest() {
     72 	var nDistParams;
     73 	var distParams;
     74 	var distArgs;
     75 	var options;
     76 	var alpha;
     77 	var opts;
     78 	var pval;
     79 	var stat;
     80 	var yVal;
     81 	var alt;
     82 	var err;
     83 	var idx;
     84 	var out;
     85 	var val;
     86 	var i;
     87 	var n;
     88 	var x;
     89 	var y;
     90 
     91 	x = arguments[ 0 ];
     92 	y = arguments[ 1 ];
     93 	if ( !isNumberArray( x ) && !isTypedArrayLike( x ) ) {
     94 		throw new TypeError( 'invalid argument. First argument must be a typed array or number array. Value: `' + x + '`.' );
     95 	}
     96 	if ( !isFunction( y ) && !isString( y ) ) {
     97 		throw new TypeError( 'invalid argument. Second argument must be either a CDF function or a string primitive. Value: `' + y + '`' );
     98 	}
     99 	if ( isString( y ) ) {
    100 		y = getCDF( y );
    101 	}
    102 	nDistParams = y.length - 1.0;
    103 	n = x.length;
    104 
    105 	distParams = new Array( nDistParams );
    106 	for ( i = 0; i < nDistParams; i++ ) {
    107 		idx = i + 2;
    108 		val = arguments[ idx ];
    109 		if ( !isNumber( val ) || isnan( val ) ) {
    110 			throw new TypeError( 'invalid argument. Distribution parameter must be a number primitive. Value: `' + val + '`.' );
    111 		}
    112 		distParams[ i ] = arguments[ idx ];
    113 	}
    114 	opts = {};
    115 	if ( arguments.length > 2 + nDistParams ) {
    116 		options = arguments[ 2 + nDistParams ];
    117 		err = validate( opts, options );
    118 		if ( err ) {
    119 			throw err;
    120 		}
    121 	}
    122 	// Make a copy to prevent mutation of x:
    123 	x = slice.call( x );
    124 
    125 	if ( opts.alpha === void 0 ) {
    126 		alpha = 0.05;
    127 	} else {
    128 		alpha = opts.alpha;
    129 	}
    130 	if ( alpha < 0.0 || alpha > 1.0 ) {
    131 		throw new RangeError( 'invalid argument. Option `alpha` must be a number in the range 0 to 1. Value: `' + alpha + '`.' );
    132 	}
    133 
    134 	// Input data has to be sorted:
    135 	if ( opts.sorted !== true ) {
    136 		x.sort( ascending );
    137 	}
    138 	distArgs = [ null ].concat( distParams );
    139 	for ( i = 0; i < n; i++ ) {
    140 		distArgs[ 0 ] = x[ i ];
    141 		yVal = y.apply( null, distArgs );
    142 		x[ i ] = yVal - ( i / n );
    143 	}
    144 
    145 	alt = opts.alternative || 'two-sided';
    146 	switch ( alt ) {
    147 	case 'two-sided':
    148 		stat = max( n, [ max( n, x, 1 ), max( n, subtract( 1/n, x ), 1 ) ], 1 );
    149 		break;
    150 	case 'greater':
    151 		stat = max( n, subtract( 1/n, x ), 1 );
    152 		break;
    153 	case 'less':
    154 		stat = max( n, x, 1 );
    155 		break;
    156 	default:
    157 		throw new Error( 'Invalid option. `alternative` must be either `two-sided`, `less` or `greater`. Value: `' + alt + '`' );
    158 	}
    159 	if ( alt === 'two-sided' ) {
    160 		pval = 1.0 - pKolmogorov( stat, n );
    161 	} else {
    162 		pval = 1.0 - pKolmogorov1( stat, n );
    163 	}
    164 
    165 	out = {};
    166 	setReadOnly( out, 'rejected', pval <= alpha );
    167 	setReadOnly( out, 'alpha', alpha );
    168 	setReadOnly( out, 'pValue', pval );
    169 	setReadOnly( out, 'statistic', stat );
    170 	setReadOnly( out, 'method', 'Kolmogorov-Smirnov goodness-of-fit test' );
    171 	setReadOnly( out, 'print', print );
    172 	setReadOnly( out, 'alternative', alt );
    173 	return out;
    174 }
    175 
    176 
    177 // EXPORTS //
    178 
    179 module.exports = kstest;