time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (6134B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2018 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # incrvmr
     22 
     23 > Compute a [variance-to-mean ratio][variance-to-mean-ratio] (VMR) incrementally.
     24 
     25 <section class="intro">
     26 
     27 The [unbiased sample variance][sample-variance] is defined as
     28 
     29 <!-- <equation class="equation" label="eq:unbiased_sample_variance" align="center" raw="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} ( x_i - \bar{x} )^2" alt="Equation for the unbiased sample variance."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} ( x_i - \bar{x} )^2" data-equation="eq:unbiased_sample_variance">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@7fe559e94716008fb414ec7c6b3d0e3e1194f2ba/lib/node_modules/@stdlib/stats/incr/vmr/docs/img/equation_unbiased_sample_variance.svg" alt="Equation for the unbiased sample variance.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 and the [arithmetic mean][arithmetic-mean] is defined as
     39 
     40 <!-- <equation class="equation" label="eq:arithmetic_mean" align="center" raw="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" alt="Equation for the arithmetic mean."> -->
     41 
     42 <div class="equation" align="center" data-raw-text="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" data-equation="eq:arithmetic_mean">
     43     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@86f8c49b0e95ee794f0b098b8d17444c0cbeea0a/lib/node_modules/@stdlib/stats/incr/vmr/docs/img/equation_arithmetic_mean.svg" alt="Equation for the arithmetic mean.">
     44     <br>
     45 </div>
     46 
     47 <!-- </equation> -->
     48 
     49 The [variance-to-mean ratio][variance-to-mean-ratio] (VMR) is thus defined as
     50 
     51 <!-- <equation class="equation" label="eq:variance_to_mean_ratio" align="center" raw="D = \frac{s^2}{\bar{x}}" alt="Equation for the variance-to-mean ratio (VMR)."> -->
     52 
     53 <div class="equation" align="center" data-raw-text="D = \frac{s^2}{\bar{x}}" data-equation="eq:variance_to_mean_ratio">
     54     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@86f8c49b0e95ee794f0b098b8d17444c0cbeea0a/lib/node_modules/@stdlib/stats/incr/vmr/docs/img/equation_variance_to_mean_ratio.svg" alt="Equation for the variance-to-mean ratio (VMR).">
     55     <br>
     56 </div>
     57 
     58 <!-- </equation> -->
     59 
     60 </section>
     61 
     62 <!-- /.intro -->
     63 
     64 <section class="usage">
     65 
     66 ## Usage
     67 
     68 ```javascript
     69 var incrvmr = require( '@stdlib/stats/incr/vmr' );
     70 ```
     71 
     72 #### incrvmr( \[mean] )
     73 
     74 Returns an accumulator `function` which incrementally computes a [variance-to-mean ratio][variance-to-mean-ratio].
     75 
     76 ```javascript
     77 var accumulator = incrvmr();
     78 ```
     79 
     80 If the mean is already known, provide a `mean` argument.
     81 
     82 ```javascript
     83 var accumulator = incrvmr( 3.0 );
     84 ```
     85 
     86 #### accumulator( \[x] )
     87 
     88 If provided an input value `x`, the accumulator function returns an updated accumulated value. If not provided an input value `x`, the accumulator function returns the current accumulated value.
     89 
     90 ```javascript
     91 var accumulator = incrvmr();
     92 
     93 var D = accumulator( 2.0 );
     94 // returns 0.0
     95 
     96 D = accumulator( 1.0 ); // => s^2 = ((2-1.5)^2+(1-1.5)^2) / (2-1)
     97 // returns ~0.33
     98 
     99 D = accumulator( 3.0 ); // => s^2 = ((2-2)^2+(1-2)^2+(3-2)^2) / (3-1)
    100 // returns 0.5
    101 
    102 D = accumulator();
    103 // returns 0.5
    104 ```
    105 
    106 </section>
    107 
    108 <!-- /.usage -->
    109 
    110 <section class="notes">
    111 
    112 ## Notes
    113 
    114 -   Input values are **not** type checked. If provided `NaN` or a value which, when used in computations, results in `NaN`, the accumulated value is `NaN` for **all** future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly **before** passing the value to the accumulator function.
    115 
    116 -   The following table summarizes how to interpret the [variance-to-mean ratio][variance-to-mean-ratio]:
    117 
    118     |        VMR        |   Description   |     Example Distribution     |
    119     | :---------------: | :-------------: | :--------------------------: |
    120     |         0         |  not dispersed  |           constant           |
    121     | 0 &lt; VMR &lt; 1 | under-dispersed |           binomial           |
    122     |         1         |        --       |            Poisson           |
    123     |         >1        |  over-dispersed | geometric, negative-binomial |
    124 
    125     Accordingly, one can use the [variance-to-mean ratio][variance-to-mean-ratio] to assess whether observed data can be modeled as a Poisson process. When observed data is "under-dispersed", observed data may be more regular than as would be the case for a Poisson process. When observed data is "over-dispersed", observed data may contain clusters (i.e., clumped, concentrated data).
    126 
    127 -   The [variance-to-mean ratio][variance-to-mean-ratio] is typically computed on nonnegative values. The measure may lack meaning for data which can assume both positive and negative values.
    128 
    129 -   The [variance-to-mean ratio][variance-to-mean-ratio] is also known as the **index of dispersion**, **dispersion index**, **coefficient of dispersion**, and **relative variance**.
    130 
    131 </section>
    132 
    133 <!-- /.notes -->
    134 
    135 <section class="examples">
    136 
    137 ## Examples
    138 
    139 <!-- eslint no-undef: "error" -->
    140 
    141 ```javascript
    142 var randu = require( '@stdlib/random/base/randu' );
    143 var incrvmr = require( '@stdlib/stats/incr/vmr' );
    144 
    145 var accumulator;
    146 var v;
    147 var i;
    148 
    149 // Initialize an accumulator:
    150 accumulator = incrvmr();
    151 
    152 // For each simulated datum, update the variance-to-mean ratio...
    153 for ( i = 0; i < 100; i++ ) {
    154     v = randu() * 100.0;
    155     accumulator( v );
    156 }
    157 console.log( accumulator() );
    158 ```
    159 
    160 </section>
    161 
    162 <!-- /.examples -->
    163 
    164 <section class="links">
    165 
    166 [variance-to-mean-ratio]: https://en.wikipedia.org/wiki/Index_of_dispersion
    167 
    168 [arithmetic-mean]: https://en.wikipedia.org/wiki/Arithmetic_mean
    169 
    170 [sample-variance]: https://en.wikipedia.org/wiki/Variance
    171 
    172 </section>
    173 
    174 <!-- /.links -->