main.js (4692B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2018 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var isNumber = require( '@stdlib/assert/is-number' ).isPrimitive; 24 var sqrt = require( '@stdlib/math/base/special/sqrt' ); 25 var isnan = require( '@stdlib/math/base/assert/is-nan' ); 26 27 28 // MAIN // 29 30 /** 31 * Returns an accumulator function which incrementally computes a corrected sample standard deviation. 32 * 33 * ## Method 34 * 35 * - This implementation uses Welford's algorithm for efficient computation, which can be derived as follows. Let 36 * 37 * ```tex 38 * \begin{align*} 39 * S_n &= n \sigma_n^2 \\ 40 * &= \sum_{i=1}^{n} (x_i - \mu_n)^2 \\ 41 * &= \biggl(\sum_{i=1}^{n} x_i^2 \biggr) - n\mu_n^2 42 * \end{align*} 43 * ``` 44 * 45 * Accordingly, 46 * 47 * ```tex 48 * \begin{align*} 49 * S_n - S_{n-1} &= \sum_{i=1}^{n} x_i^2 - n\mu_n^2 - \sum_{i=1}^{n-1} x_i^2 + (n-1)\mu_{n-1}^2 \\ 50 * &= x_n^2 - n\mu_n^2 + (n-1)\mu_{n-1}^2 \\ 51 * &= x_n^2 - \mu_{n-1}^2 + n(\mu_{n-1}^2 - \mu_n^2) \\ 52 * &= x_n^2 - \mu_{n-1}^2 + n(\mu_{n-1} - \mu_n)(\mu_{n-1} + \mu_n) \\ 53 * &= x_n^2 - \mu_{n-1}^2 + (\mu_{n-1} - x_n)(\mu_{n-1} + \mu_n) \\ 54 * &= x_n^2 - \mu_{n-1}^2 + \mu_{n-1}^2 - x_n\mu_n - x_n\mu_{n-1} + \mu_n\mu_{n-1} \\ 55 * &= x_n^2 - x_n\mu_n - x_n\mu_{n-1} + \mu_n\mu_{n-1} \\ 56 * &= (x_n - \mu_{n-1})(x_n - \mu_n) \\ 57 * &= S_{n-1} + (x_n - \mu_{n-1})(x_n - \mu_n) 58 * \end{align*} 59 * ``` 60 * 61 * where we use the identity 62 * 63 * ```tex 64 * x_n - \mu_{n-1} = n (\mu_n - \mu_{n-1}) 65 * ``` 66 * 67 * ## References 68 * 69 * - Welford, B. P. 1962. "Note on a Method for Calculating Corrected Sums of Squares and Products." _Technometrics_ 4 (3). Taylor & Francis: 419–20. doi:[10.1080/00401706.1962.10490022](https://doi.org/10.1080/00401706.1962.10490022). 70 * - van Reeken, A. J. 1968. "Letters to the Editor: Dealing with Neely's Algorithms." _Communications of the ACM_ 11 (3): 149–50. doi:[10.1145/362929.362961](https://doi.org/10.1145/362929.362961). 71 * 72 * @param {number} [mean] - mean value 73 * @throws {TypeError} must provide a number primitive 74 * @returns {Function} accumulator function 75 * 76 * @example 77 * var accumulator = incrstdev(); 78 * 79 * var s = accumulator(); 80 * // returns null 81 * 82 * s = accumulator( 2.0 ); 83 * // returns 0.0 84 * 85 * s = accumulator( -5.0 ); 86 * // returns ~4.95 87 * 88 * s = accumulator(); 89 * // returns ~4.95 90 * 91 * @example 92 * var accumulator = incrstdev( 3.0 ); 93 */ 94 function incrstdev( mean ) { 95 var delta; 96 var mu; 97 var M2; 98 var N; 99 100 M2 = 0.0; 101 N = 0; 102 if ( arguments.length ) { 103 if ( !isNumber( mean ) ) { 104 throw new TypeError( 'invalid argument. Must provide a number primitive. Value: `' + mean + '`.' ); 105 } 106 mu = mean; 107 return accumulator2; 108 } 109 mu = 0.0; 110 return accumulator1; 111 112 /** 113 * If provided a value, the accumulator function returns an updated corrected sample standard deviation. If not provided a value, the accumulator function returns the current corrected sample standard deviation. 114 * 115 * @private 116 * @param {number} [x] - new value 117 * @returns {(number|null)} corrected sample standard deviation or null 118 */ 119 function accumulator1( x ) { 120 if ( arguments.length === 0 ) { 121 if ( N === 0 ) { 122 return null; 123 } 124 if ( N === 1 ) { 125 return ( isnan( M2 ) ) ? NaN : 0.0; 126 } 127 return sqrt( M2/(N-1) ); 128 } 129 N += 1; 130 delta = x - mu; 131 mu += delta / N; 132 M2 += delta * ( x-mu ); 133 if ( N < 2 ) { 134 return ( isnan( M2 ) ) ? NaN : 0.0; 135 } 136 return sqrt( M2/(N-1) ); 137 } 138 139 /** 140 * If provided a value, the accumulator function returns an updated corrected sample standard deviation. If not provided a value, the accumulator function returns the current corrected sample standard deviation. 141 * 142 * @private 143 * @param {number} [x] - new value 144 * @returns {(number|null)} corrected sample standard deviation or null 145 */ 146 function accumulator2( x ) { 147 if ( arguments.length === 0 ) { 148 if ( N === 0 ) { 149 return null; 150 } 151 return sqrt( M2/N ); 152 } 153 N += 1; 154 delta = x - mu; 155 M2 += delta * delta; 156 return sqrt( M2/N ); 157 } 158 } 159 160 161 // EXPORTS // 162 163 module.exports = incrstdev;