time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (7141B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2018 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # incrpcorrmat
     22 
     23 > Compute a [sample Pearson product-moment correlation matrix][pearson-correlation] incrementally.
     24 
     25 <section class="intro">
     26 
     27 A [Pearson product-moment correlation matrix][pearson-correlation] is an M-by-M matrix whose elements specified by indices `j` and `k` are the [Pearson product-moment correlation coefficients][pearson-correlation] between the jth and kth data variables. The [Pearson product-moment correlation coefficient][pearson-correlation] between random variables `X` and `Y` is defined as
     28 
     29 <!-- <equation class="equation" label="eq:pearson_correlation_coefficient" align="center" raw="\rho_{X,Y} = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y}" alt="Equation for the Pearson product-moment correlation coefficient."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="\rho_{X,Y} = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y}" data-equation="eq:pearson_correlation_coefficient">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@49d8cabda84033d55d7b8069f19ee3dd8b8d1496/lib/node_modules/@stdlib/stats/incr/pcorrmat/docs/img/equation_pearson_correlation_coefficient.svg" alt="Equation for the Pearson product-moment correlation coefficient.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 where the numerator is the [covariance][covariance] and the denominator is the product of the respective standard deviations.
     39 
     40 For a sample of size `n`, the [sample Pearson product-moment correlation coefficient][pearson-correlation] is defined as
     41 
     42 <!-- <equation class="equation" label="eq:sample_pearson_correlation_coefficient" align="center" raw="r = \frac{\sum_{i=0}^{n-1} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=0}^{n-1} (x_i - \bar{x})^2} \sqrt{\sum_{i=0}^{n-1} (y_i - \bar{y})^2}}" alt="Equation for the sample Pearson product-moment correlation coefficient."> -->
     43 
     44 <div class="equation" align="center" data-raw-text="r = \frac{\sum_{i=0}^{n-1} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=0}^{n-1} (x_i - \bar{x})^2} \sqrt{\sum_{i=0}^{n-1} (y_i - \bar{y})^2}}" data-equation="eq:sample_pearson_correlation_coefficient">
     45     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@49d8cabda84033d55d7b8069f19ee3dd8b8d1496/lib/node_modules/@stdlib/stats/incr/pcorrmat/docs/img/equation_sample_pearson_correlation_coefficient.svg" alt="Equation for the sample Pearson product-moment correlation coefficient.">
     46     <br>
     47 </div>
     48 
     49 <!-- </equation> -->
     50 
     51 </section>
     52 
     53 <!-- /.intro -->
     54 
     55 <section class="usage">
     56 
     57 ## Usage
     58 
     59 ```javascript
     60 var incrpcorrmat = require( '@stdlib/stats/incr/pcorrmat' );
     61 ```
     62 
     63 #### incrpcorrmat( out\[, means] )
     64 
     65 Returns an accumulator `function` which incrementally computes a [sample Pearson product-moment correlation matrix][pearson-correlation].
     66 
     67 ```javascript
     68 // Create an accumulator for computing a 2-dimensional correlation matrix:
     69 var accumulator = incrpcorrmat( 2 );
     70 ```
     71 
     72 The `out` argument may be either the order of the [correlation matrix][pearson-correlation] or a square 2-dimensional [`ndarray`][@stdlib/ndarray/ctor] for storing the [correlation matrix][pearson-correlation].
     73 
     74 ```javascript
     75 var Float64Array = require( '@stdlib/array/float64' );
     76 var ndarray = require( '@stdlib/ndarray/ctor' );
     77 
     78 var buffer = new Float64Array( 4 );
     79 var shape = [ 2, 2 ];
     80 var strides = [ 2, 1 ];
     81 
     82 // Create a 2-dimensional output correlation matrix:
     83 var corr = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );
     84 
     85 var accumulator = incrpcorrmat( corr );
     86 ```
     87 
     88 When means are known, the function supports providing a 1-dimensional [`ndarray`][@stdlib/ndarray/ctor] containing mean values.
     89 
     90 ```javascript
     91 var Float64Array = require( '@stdlib/array/float64' );
     92 var ndarray = require( '@stdlib/ndarray/ctor' );
     93 
     94 var buffer = new Float64Array( 2 );
     95 var shape = [ 2 ];
     96 var strides = [ 1 ];
     97 
     98 var means = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );
     99 
    100 means.set( 0, 3.0 );
    101 means.set( 1, -5.5 );
    102 
    103 var accumulator = incrpcorrmat( 2, means );
    104 ```
    105 
    106 #### accumulator( \[vector] )
    107 
    108 If provided a data vector, the accumulator function returns an updated [sample Pearson product-moment correlation matrix][pearson-correlation]. If not provided a data vector, the accumulator function returns the current [sample Pearson product-moment correlation matrix][pearson-correlation].
    109 
    110 ```javascript
    111 var Float64Array = require( '@stdlib/array/float64' );
    112 var ndarray = require( '@stdlib/ndarray/ctor' );
    113 
    114 var buffer = new Float64Array( 4 );
    115 var shape = [ 2, 2 ];
    116 var strides = [ 2, 1 ];
    117 var corr = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );
    118 
    119 buffer = new Float64Array( 2 );
    120 shape = [ 2 ];
    121 strides = [ 1 ];
    122 var vec = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );
    123 
    124 var accumulator = incrpcorrmat( corr );
    125 
    126 vec.set( 0, 2.0 );
    127 vec.set( 1, 1.0 );
    128 
    129 var out = accumulator( vec );
    130 // returns <ndarray>
    131 
    132 var bool = ( out === corr );
    133 // returns true
    134 
    135 vec.set( 0, 1.0 );
    136 vec.set( 1, -5.0 );
    137 
    138 out = accumulator( vec );
    139 // returns <ndarray>
    140 
    141 vec.set( 0, 3.0 );
    142 vec.set( 1, 3.14 );
    143 
    144 out = accumulator( vec );
    145 // returns <ndarray>
    146 
    147 out = accumulator();
    148 // returns <ndarray>
    149 ```
    150 
    151 </section>
    152 
    153 <!-- /.usage -->
    154 
    155 <section class="notes">
    156 
    157 </section>
    158 
    159 <!-- /.notes -->
    160 
    161 <section class="examples">
    162 
    163 ## Examples
    164 
    165 <!-- eslint no-undef: "error" -->
    166 
    167 ```javascript
    168 var randu = require( '@stdlib/random/base/randu' );
    169 var ndarray = require( '@stdlib/ndarray/ctor' );
    170 var Float64Array = require( '@stdlib/array/float64' );
    171 var incrpcorrmat = require( '@stdlib/stats/incr/pcorrmat' );
    172 
    173 var corr;
    174 var rxy;
    175 var ryx;
    176 var rx;
    177 var ry;
    178 var i;
    179 
    180 // Initialize an accumulator for a 2-dimensional correlation matrix:
    181 var accumulator = incrpcorrmat( 2 );
    182 
    183 // Create a 1-dimensional data vector:
    184 var buffer = new Float64Array( 2 );
    185 var shape = [ 2 ];
    186 var strides = [ 1 ];
    187 
    188 var vec = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );
    189 
    190 // For each simulated data vector, update the sample correlation matrix...
    191 for ( i = 0; i < 100; i++ ) {
    192     vec.set( 0, randu()*100.0 );
    193     vec.set( 1, randu()*100.0 );
    194     corr = accumulator( vec );
    195 
    196     rx = corr.get( 0, 0 ).toFixed( 4 );
    197     ry = corr.get( 1, 1 ).toFixed( 4 );
    198     rxy = corr.get( 0, 1 ).toFixed( 4 );
    199     ryx = corr.get( 1, 0 ).toFixed( 4 );
    200 
    201     console.log( '[ %d, %d\n  %d, %d ]', rx, rxy, ryx, ry );
    202 }
    203 ```
    204 
    205 </section>
    206 
    207 <!-- /.examples -->
    208 
    209 <section class="links">
    210 
    211 [pearson-correlation]: https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
    212 
    213 [covariance]: https://en.wikipedia.org/wiki/Covariance
    214 
    215 [@stdlib/ndarray/ctor]: https://www.npmjs.com/package/@stdlib/ndarray-ctor
    216 
    217 </section>
    218 
    219 <!-- /.links -->