time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (6795B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2018 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # incrpcorrdistmat
     22 
     23 > Compute a [sample Pearson product-moment correlation distance matrix][pearson-correlation] incrementally.
     24 
     25 <section class="intro">
     26 
     27 A [sample Pearson product-moment correlation distance matrix][pearson-correlation] is an M-by-M matrix whose elements specified by indices `j` and `k` are the [sample Pearson product-moment correlation distances][pearson-correlation] between the jth and kth data variables. The [sample Pearson product-moment correlation distance][pearson-correlation] is defined as
     28 
     29 <!-- <equation class="equation" label="eq:pearson_distance" align="center" raw="d_{x,y} = 1 - r_{x,y} = 1 - \frac{\operatorname{cov_n(x,y)}}{\sigma_x \sigma_y}" alt="Equation for the Pearson product-moment correlation distance."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="d_{x,y} = 1 - r_{x,y} = 1 - \frac{\operatorname{cov_n(x,y)}}{\sigma_x \sigma_y}" data-equation="eq:pearson_distance">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@49d8cabda84033d55d7b8069f19ee3dd8b8d1496/lib/node_modules/@stdlib/stats/incr/pcorrdistmat/docs/img/equation_pearson_distance.svg" alt="Equation for the Pearson product-moment correlation distance.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 where `r` is the [sample Pearson product-moment correlation coefficient][pearson-correlation], `cov(x,y)` is the sample covariance, and `σ` corresponds to the sample standard deviation. As `r` resides on the interval `[-1,1]`, `d` resides on the interval `[0,2]`.
     39 
     40 </section>
     41 
     42 <!-- /.intro -->
     43 
     44 <section class="usage">
     45 
     46 ## Usage
     47 
     48 ```javascript
     49 var incrpcorrdistmat = require( '@stdlib/stats/incr/pcorrdistmat' );
     50 ```
     51 
     52 #### incrpcorrdistmat( out\[, means] )
     53 
     54 Returns an accumulator `function` which incrementally computes a [sample Pearson product-moment correlation distance matrix][pearson-correlation].
     55 
     56 ```javascript
     57 // Create an accumulator for computing a 2-dimensional correlation distance matrix:
     58 var accumulator = incrpcorrdistmat( 2 );
     59 ```
     60 
     61 The `out` argument may be either the order of the [correlation distance matrix][pearson-correlation] or a square 2-dimensional [`ndarray`][@stdlib/ndarray/ctor] for storing the [correlation distance matrix][pearson-correlation].
     62 
     63 ```javascript
     64 var Float64Array = require( '@stdlib/array/float64' );
     65 var ndarray = require( '@stdlib/ndarray/ctor' );
     66 
     67 var buffer = new Float64Array( 4 );
     68 var shape = [ 2, 2 ];
     69 var strides = [ 2, 1 ];
     70 
     71 // Create a 2-dimensional output correlation distance matrix:
     72 var dist = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );
     73 
     74 var accumulator = incrpcorrdistmat( dist );
     75 ```
     76 
     77 When means are known, the function supports providing a 1-dimensional [`ndarray`][@stdlib/ndarray/ctor] containing mean values.
     78 
     79 ```javascript
     80 var Float64Array = require( '@stdlib/array/float64' );
     81 var ndarray = require( '@stdlib/ndarray/ctor' );
     82 
     83 var buffer = new Float64Array( 2 );
     84 var shape = [ 2 ];
     85 var strides = [ 1 ];
     86 
     87 var means = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );
     88 
     89 means.set( 0, 3.0 );
     90 means.set( 1, -5.5 );
     91 
     92 var accumulator = incrpcorrdistmat( 2, means );
     93 ```
     94 
     95 #### accumulator( \[vector] )
     96 
     97 If provided a data vector, the accumulator function returns an updated [sample Pearson product-moment distance correlation matrix][pearson-correlation]. If not provided a data vector, the accumulator function returns the current [sample Pearson product-moment correlation distance matrix][pearson-correlation].
     98 
     99 ```javascript
    100 var Float64Array = require( '@stdlib/array/float64' );
    101 var ndarray = require( '@stdlib/ndarray/ctor' );
    102 
    103 var buffer = new Float64Array( 4 );
    104 var shape = [ 2, 2 ];
    105 var strides = [ 2, 1 ];
    106 var dist = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );
    107 
    108 buffer = new Float64Array( 2 );
    109 shape = [ 2 ];
    110 strides = [ 1 ];
    111 var vec = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );
    112 
    113 var accumulator = incrpcorrdistmat( dist );
    114 
    115 vec.set( 0, 2.0 );
    116 vec.set( 1, 1.0 );
    117 
    118 var out = accumulator( vec );
    119 // returns <ndarray>
    120 
    121 var bool = ( out === dist );
    122 // returns true
    123 
    124 vec.set( 0, 1.0 );
    125 vec.set( 1, -5.0 );
    126 
    127 out = accumulator( vec );
    128 // returns <ndarray>
    129 
    130 vec.set( 0, 3.0 );
    131 vec.set( 1, 3.14 );
    132 
    133 out = accumulator( vec );
    134 // returns <ndarray>
    135 
    136 out = accumulator();
    137 // returns <ndarray>
    138 ```
    139 
    140 </section>
    141 
    142 <!-- /.usage -->
    143 
    144 <section class="notes">
    145 
    146 ## Notes
    147 
    148 -   Due to limitations inherent in representing numeric values using floating-point format (i.e., the inability to represent numeric values with infinite precision), the [correlation distance][pearson-correlation] between perfectly correlated random variables may **not** be `0` or `2`. In fact, the [correlation distance][pearson-correlation] is **not** guaranteed to be strictly on the interval `[0,2]`. Any computed distance should, however, be within floating-point roundoff error.
    149 
    150 </section>
    151 
    152 <!-- /.notes -->
    153 
    154 <section class="examples">
    155 
    156 ## Examples
    157 
    158 <!-- eslint no-undef: "error" -->
    159 
    160 ```javascript
    161 var randu = require( '@stdlib/random/base/randu' );
    162 var ndarray = require( '@stdlib/ndarray/ctor' );
    163 var Float64Array = require( '@stdlib/array/float64' );
    164 var incrpcorrdistmat = require( '@stdlib/stats/incr/pcorrdistmat' );
    165 
    166 var dist;
    167 var dxy;
    168 var dyx;
    169 var dx;
    170 var dy;
    171 var i;
    172 
    173 // Initialize an accumulator for a 2-dimensional correlation distance matrix:
    174 var accumulator = incrpcorrdistmat( 2 );
    175 
    176 // Create a 1-dimensional data vector:
    177 var buffer = new Float64Array( 2 );
    178 var shape = [ 2 ];
    179 var strides = [ 1 ];
    180 
    181 var vec = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );
    182 
    183 // For each simulated data vector, update the sample correlation distance matrix...
    184 for ( i = 0; i < 100; i++ ) {
    185     vec.set( 0, randu()*100.0 );
    186     vec.set( 1, randu()*100.0 );
    187     dist = accumulator( vec );
    188 
    189     dx = dist.get( 0, 0 ).toFixed( 4 );
    190     dy = dist.get( 1, 1 ).toFixed( 4 );
    191     dxy = dist.get( 0, 1 ).toFixed( 4 );
    192     dyx = dist.get( 1, 0 ).toFixed( 4 );
    193 
    194     console.log( '[ %d, %d\n  %d, %d ]', dx, dxy, dyx, dy );
    195 }
    196 ```
    197 
    198 </section>
    199 
    200 <!-- /.examples -->
    201 
    202 <section class="links">
    203 
    204 [pearson-correlation]: https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
    205 
    206 [@stdlib/ndarray/ctor]: https://www.npmjs.com/package/@stdlib/ndarray-ctor
    207 
    208 </section>
    209 
    210 <!-- /.links -->