time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (4934B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2018 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # incrpcorr
     22 
     23 > Compute a [sample Pearson product-moment correlation coefficient][pearson-correlation] incrementally.
     24 
     25 <section class="intro">
     26 
     27 The [Pearson product-moment correlation coefficient][pearson-correlation] between random variables `X` and `Y` is defined as
     28 
     29 <!-- <equation class="equation" label="eq:pearson_correlation_coefficient" align="center" raw="\rho_{X,Y} = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y}" alt="Equation for the Pearson product-moment correlation coefficient."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="\rho_{X,Y} = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y}" data-equation="eq:pearson_correlation_coefficient">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@49d8cabda84033d55d7b8069f19ee3dd8b8d1496/lib/node_modules/@stdlib/stats/incr/pcorr/docs/img/equation_pearson_correlation_coefficient.svg" alt="Equation for the Pearson product-moment correlation coefficient.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 where the numerator is the [covariance][covariance] and the denominator is the product of the respective standard deviations.
     39 
     40 For a sample of size `n`, the [sample Pearson product-moment correlation coefficient][pearson-correlation] is defined as
     41 
     42 <!-- <equation class="equation" label="eq:sample_pearson_correlation_coefficient" align="center" raw="r = \frac{\sum_{i=0}^{n-1} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=0}^{n-1} (x_i - \bar{x})^2} \sqrt{\sum_{i=0}^{n-1} (y_i - \bar{y})^2}}" alt="Equation for the sample Pearson product-moment correlation coefficient."> -->
     43 
     44 <div class="equation" align="center" data-raw-text="r = \frac{\sum_{i=0}^{n-1} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=0}^{n-1} (x_i - \bar{x})^2} \sqrt{\sum_{i=0}^{n-1} (y_i - \bar{y})^2}}" data-equation="eq:sample_pearson_correlation_coefficient">
     45     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@49d8cabda84033d55d7b8069f19ee3dd8b8d1496/lib/node_modules/@stdlib/stats/incr/pcorr/docs/img/equation_sample_pearson_correlation_coefficient.svg" alt="Equation for the sample Pearson product-moment correlation coefficient.">
     46     <br>
     47 </div>
     48 
     49 <!-- </equation> -->
     50 
     51 </section>
     52 
     53 <!-- /.intro -->
     54 
     55 <section class="usage">
     56 
     57 ## Usage
     58 
     59 ```javascript
     60 var incrpcorr = require( '@stdlib/stats/incr/pcorr' );
     61 ```
     62 
     63 #### incrpcorr( \[mx, my] )
     64 
     65 Returns an accumulator `function` which incrementally computes a [sample Pearson product-moment correlation coefficient][pearson-correlation].
     66 
     67 ```javascript
     68 var accumulator = incrpcorr();
     69 ```
     70 
     71 If the means are already known, provide `mx` and `my` arguments.
     72 
     73 ```javascript
     74 var accumulator = incrpcorr( 3.0, -5.5 );
     75 ```
     76 
     77 #### accumulator( \[x, y] )
     78 
     79 If provided input value `x` and `y`, the accumulator function returns an updated [sample correlation coefficient][pearson-correlation]. If not provided input values `x` and `y`, the accumulator function returns the current [sample correlation coefficient][pearson-correlation].
     80 
     81 ```javascript
     82 var accumulator = incrpcorr();
     83 
     84 var v = accumulator( 2.0, 1.0 );
     85 // returns 0.0
     86 
     87 v = accumulator( 1.0, -5.0 );
     88 // returns 1.0
     89 
     90 v = accumulator( 3.0, 3.14 );
     91 // returns ~0.965
     92 
     93 v = accumulator();
     94 // returns ~0.965
     95 ```
     96 
     97 </section>
     98 
     99 <!-- /.usage -->
    100 
    101 <section class="notes">
    102 
    103 ## Notes
    104 
    105 -   Input values are **not** type checked. If provided `NaN` or a value which, when used in computations, results in `NaN`, the accumulated value is `NaN` for **all** future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly **before** passing the value to the accumulator function.
    106 
    107 </section>
    108 
    109 <!-- /.notes -->
    110 
    111 <section class="examples">
    112 
    113 ## Examples
    114 
    115 <!-- eslint no-undef: "error" -->
    116 
    117 ```javascript
    118 var randu = require( '@stdlib/random/base/randu' );
    119 var incrpcorr = require( '@stdlib/stats/incr/pcorr' );
    120 
    121 var accumulator;
    122 var x;
    123 var y;
    124 var i;
    125 
    126 // Initialize an accumulator:
    127 accumulator = incrpcorr();
    128 
    129 // For each simulated datum, update the sample correlation coefficient...
    130 for ( i = 0; i < 100; i++ ) {
    131     x = randu() * 100.0;
    132     y = randu() * 100.0;
    133     accumulator( x, y );
    134 }
    135 console.log( accumulator() );
    136 ```
    137 
    138 </section>
    139 
    140 <!-- /.examples -->
    141 
    142 <section class="links">
    143 
    144 [pearson-correlation]: https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
    145 
    146 [covariance]: https://en.wikipedia.org/wiki/Covariance
    147 
    148 </section>
    149 
    150 <!-- /.links -->