README.md (3978B)
1 <!-- 2 3 @license Apache-2.0 4 5 Copyright (c) 2018 The Stdlib Authors. 6 7 Licensed under the Apache License, Version 2.0 (the "License"); 8 you may not use this file except in compliance with the License. 9 You may obtain a copy of the License at 10 11 http://www.apache.org/licenses/LICENSE-2.0 12 13 Unless required by applicable law or agreed to in writing, software 14 distributed under the License is distributed on an "AS IS" BASIS, 15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 See the License for the specific language governing permissions and 17 limitations under the License. 18 19 --> 20 21 # incrmpe 22 23 > Compute the [mean percentage error][mean-percentage-error] (MPE) incrementally. 24 25 <section class="intro"> 26 27 The [mean percentage error][mean-percentage-error] is defined as 28 29 <!-- <equation class="equation" label="eq:mean_percentage_error" align="center" raw="\operatorname{MPE} = \frac{100}{n} \sum_{i=0}^{n-1} \frac{a_i - f_i}{a_i}" alt="Equation for the mean percentage error."> --> 30 31 <div class="equation" align="center" data-raw-text="\operatorname{MPE} = \frac{100}{n} \sum_{i=0}^{n-1} \frac{a_i - f_i}{a_i}" data-equation="eq:mean_percentage_error"> 32 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@2acedf866c9a4f1353af22f95780535612c5ee06/lib/node_modules/@stdlib/stats/incr/mpe/docs/img/equation_mean_percentage_error.svg" alt="Equation for the mean percentage error."> 33 <br> 34 </div> 35 36 <!-- </equation> --> 37 38 where `f_i` is the forecast value and `a_i` is the actual value. 39 40 </section> 41 42 <!-- /.intro --> 43 44 <section class="usage"> 45 46 ## Usage 47 48 ```javascript 49 var incrmpe = require( '@stdlib/stats/incr/mpe' ); 50 ``` 51 52 #### incrmpe() 53 54 Returns an accumulator `function` which incrementally computes the [mean percentage error][mean-percentage-error]. 55 56 ```javascript 57 var accumulator = incrmpe(); 58 ``` 59 60 #### accumulator( \[f, a] ) 61 62 If provided input values `f` and `a`, the accumulator function returns an updated [mean percentage error][mean-percentage-error]. If not provided input values `f` and `a`, the accumulator function returns the current [mean percentage error][mean-percentage-error]. 63 64 ```javascript 65 var accumulator = incrmpe(); 66 67 var m = accumulator( 2.0, 3.0 ); 68 // returns ~33.33 69 70 m = accumulator( 1.0, 4.0 ); 71 // returns ~54.17 72 73 m = accumulator( 3.0, 5.0 ); 74 // returns ~49.44 75 76 m = accumulator(); 77 // returns ~49.44 78 ``` 79 80 </section> 81 82 <!-- /.usage --> 83 84 <section class="notes"> 85 86 ## Notes 87 88 - Input values are **not** type checked. If provided `NaN` or a value which, when used in computations, results in `NaN`, the accumulated value is `NaN` for **all** future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly **before** passing the value to the accumulator function. 89 - Be careful when interpreting the [mean percentage error][mean-percentage-error] as errors can cancel. This stated, that errors can cancel makes the [mean percentage error][mean-percentage-error] suitable for measuring the bias in forecasts. 90 - **Warning**: the [mean percentage error][mean-percentage-error] is **not** suitable for intermittent demand patterns (i.e., when `a_i` is `0`). Interpretation is most straightforward when actual and forecast values are positive valued (e.g., number of widgets sold). 91 92 </section> 93 94 <!-- /.notes --> 95 96 <section class="examples"> 97 98 ## Examples 99 100 <!-- eslint no-undef: "error" --> 101 102 ```javascript 103 var randu = require( '@stdlib/random/base/randu' ); 104 var incrmpe = require( '@stdlib/stats/incr/mpe' ); 105 106 var accumulator; 107 var v1; 108 var v2; 109 var i; 110 111 // Initialize an accumulator: 112 accumulator = incrmpe(); 113 114 // For each simulated datum, update the mean percentage error... 115 for ( i = 0; i < 100; i++ ) { 116 v1 = ( randu()*100.0 ) + 50.0; 117 v2 = ( randu()*100.0 ) + 50.0; 118 accumulator( v1, v2 ); 119 } 120 console.log( accumulator() ); 121 ``` 122 123 </section> 124 125 <!-- /.examples --> 126 127 <section class="links"> 128 129 [mean-percentage-error]: https://en.wikipedia.org/wiki/Mean_percentage_error 130 131 </section> 132 133 <!-- /.links -->