time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (5793B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2018 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # incrmpcorr
     22 
     23 > Compute a moving [sample Pearson product-moment correlation coefficient][pearson-correlation] incrementally.
     24 
     25 <section class="intro">
     26 
     27 The [Pearson product-moment correlation coefficient][pearson-correlation] between random variables `X` and `Y` is defined as
     28 
     29 <!-- <equation class="equation" label="eq:pearson_correlation_coefficient" align="center" raw="\rho_{X,Y} = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y}" alt="Equation for the Pearson product-moment correlation coefficient."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="\rho_{X,Y} = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y}" data-equation="eq:pearson_correlation_coefficient">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@49d8cabda84033d55d7b8069f19ee3dd8b8d1496/lib/node_modules/@stdlib/stats/incr/mpcorr/docs/img/equation_pearson_correlation_coefficient.svg" alt="Equation for the Pearson product-moment correlation coefficient.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 where the numerator is the [covariance][covariance] and the denominator is the product of the respective standard deviations.
     39 
     40 For a sample of size `W`, the [sample Pearson product-moment correlation coefficient][pearson-correlation] is defined as
     41 
     42 <!-- <equation class="equation" label="eq:sample_pearson_correlation_coefficient" align="center" raw="r = \frac{\sum_{i=0}^{n-1} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=0}^{n-1} (x_i - \bar{x})^2} \sqrt{\sum_{i=0}^{n-1} (y_i - \bar{y})^2}}" alt="Equation for the sample Pearson product-moment correlation coefficient."> -->
     43 
     44 <div class="equation" align="center" data-raw-text="r = \frac{\sum_{i=0}^{n-1} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=0}^{n-1} (x_i - \bar{x})^2} \sqrt{\sum_{i=0}^{n-1} (y_i - \bar{y})^2}}" data-equation="eq:sample_pearson_correlation_coefficient">
     45     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@49d8cabda84033d55d7b8069f19ee3dd8b8d1496/lib/node_modules/@stdlib/stats/incr/mpcorr/docs/img/equation_sample_pearson_correlation_coefficient.svg" alt="Equation for the sample Pearson product-moment correlation coefficient.">
     46     <br>
     47 </div>
     48 
     49 <!-- </equation> -->
     50 
     51 </section>
     52 
     53 <!-- /.intro -->
     54 
     55 <section class="usage">
     56 
     57 ## Usage
     58 
     59 ```javascript
     60 var incrmpcorr = require( '@stdlib/stats/incr/mpcorr' );
     61 ```
     62 
     63 #### incrmpcorr( window\[, mx, my] )
     64 
     65 Returns an accumulator `function` which incrementally computes a moving [sample Pearson product-moment correlation coefficient][pearson-correlation]. The `window` parameter defines the number of values over which to compute the moving [sample Pearson product-moment correlation coefficient][pearson-correlation].
     66 
     67 ```javascript
     68 var accumulator = incrmpcorr( 3 );
     69 ```
     70 
     71 If means are already known, provide `mx` and `my` arguments.
     72 
     73 ```javascript
     74 var accumulator = incrmpcorr( 3, 5.0, -3.14 );
     75 ```
     76 
     77 #### accumulator( \[x, y] )
     78 
     79 If provided input values `x` and `y`, the accumulator function returns an updated [sample Pearson product-moment correlation coefficient][pearson-correlation]. If not provided input values `x` and `y`, the accumulator function returns the current [sample Pearson product-moment correlation coefficient][pearson-correlation].
     80 
     81 ```javascript
     82 var accumulator = incrmpcorr( 3 );
     83 
     84 var r = accumulator();
     85 // returns null
     86 
     87 // Fill the window...
     88 r = accumulator( 2.0, 1.0 ); // [(2.0, 1.0)]
     89 // returns 0.0
     90 
     91 r = accumulator( -5.0, 3.14 ); // [(2.0, 1.0), (-5.0, 3.14)]
     92 // returns ~-1.0
     93 
     94 r = accumulator( 3.0, -1.0 ); // [(2.0, 1.0), (-5.0, 3.14), (3.0, -1.0)]
     95 // returns ~-0.925
     96 
     97 // Window begins sliding...
     98 r = accumulator( 5.0, -9.5 ); // [(-5.0, 3.14), (3.0, -1.0), (5.0, -9.5)]
     99 // returns ~-0.863
    100 
    101 r = accumulator( -5.0, 1.5 ); // [(3.0, -1.0), (5.0, -9.5), (-5.0, 1.5)]
    102 // returns ~-0.803
    103 
    104 r = accumulator();
    105 // returns ~-0.803
    106 ```
    107 
    108 </section>
    109 
    110 <!-- /.usage -->
    111 
    112 <section class="notes">
    113 
    114 ## Notes
    115 
    116 -   Input values are **not** type checked. If provided `NaN` or a value which, when used in computations, results in `NaN`, the accumulated value is `NaN` for **at least** `W-1` future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly **before** passing the value to the accumulator function.
    117 -   As `W` (x,y) pairs are needed to fill the window buffer, the first `W-1` returned values are calculated from smaller sample sizes. Until the window is full, each returned value is calculated from all provided values.
    118 
    119 </section>
    120 
    121 <!-- /.notes -->
    122 
    123 <section class="examples">
    124 
    125 ## Examples
    126 
    127 <!-- eslint no-undef: "error" -->
    128 
    129 ```javascript
    130 var randu = require( '@stdlib/random/base/randu' );
    131 var incrmpcorr = require( '@stdlib/stats/incr/mpcorr' );
    132 
    133 var accumulator;
    134 var x;
    135 var y;
    136 var i;
    137 
    138 // Initialize an accumulator:
    139 accumulator = incrmpcorr( 5 );
    140 
    141 // For each simulated datum, update the moving sample correlation coefficient...
    142 for ( i = 0; i < 100; i++ ) {
    143     x = randu() * 100.0;
    144     y = randu() * 100.0;
    145     accumulator( x, y );
    146 }
    147 console.log( accumulator() );
    148 ```
    149 
    150 </section>
    151 
    152 <!-- /.examples -->
    153 
    154 <section class="links">
    155 
    156 [pearson-correlation]: https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
    157 
    158 [covariance]: https://en.wikipedia.org/wiki/Covariance
    159 
    160 </section>
    161 
    162 <!-- /.links -->