README.md (4747B)
1 <!-- 2 3 @license Apache-2.0 4 5 Copyright (c) 2018 The Stdlib Authors. 6 7 Licensed under the Apache License, Version 2.0 (the "License"); 8 you may not use this file except in compliance with the License. 9 You may obtain a copy of the License at 10 11 http://www.apache.org/licenses/LICENSE-2.0 12 13 Unless required by applicable law or agreed to in writing, software 14 distributed under the License is distributed on an "AS IS" BASIS, 15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 See the License for the specific language governing permissions and 17 limitations under the License. 18 19 --> 20 21 # incrmmpe 22 23 > Compute a moving [mean percentage error][mean-percentage-error] (MPE) incrementally. 24 25 <section class="intro"> 26 27 For a window of size `W`, the [mean percentage error][mean-percentage-error] is defined as 28 29 <!-- <equation class="equation" label="eq:mean_percentage_error" align="center" raw="\operatorname{MPE} = \frac{100}{W} \sum_{i=0}^{W-1} \frac{a_i - f_i}{a_i}" alt="Equation for the mean percentage error."> --> 30 31 <div class="equation" align="center" data-raw-text="\operatorname{MPE} = \frac{100}{W} \sum_{i=0}^{W-1} \frac{a_i - f_i}{a_i}" data-equation="eq:mean_percentage_error"> 32 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@d97022bce00ceb9db681cb6cc8fb6c87ad86287f/lib/node_modules/@stdlib/stats/incr/mmpe/docs/img/equation_mean_percentage_error.svg" alt="Equation for the mean percentage error."> 33 <br> 34 </div> 35 36 <!-- </equation> --> 37 38 where `f_i` is the forecast value and `a_i` is the actual value. 39 40 </section> 41 42 <!-- /.intro --> 43 44 <section class="usage"> 45 46 ## Usage 47 48 ```javascript 49 var incrmmpe = require( '@stdlib/stats/incr/mmpe' ); 50 ``` 51 52 #### incrmmpe( window ) 53 54 Returns an accumulator `function` which incrementally computes a moving [mean percentage error][mean-percentage-error]. The `window` parameter defines the number of values over which to compute the moving [mean percentage error][mean-percentage-error]. 55 56 ```javascript 57 var accumulator = incrmmpe( 3 ); 58 ``` 59 60 #### accumulator( \[f, a] ) 61 62 If provided input values `f` and `a`, the accumulator function returns an updated [mean percentage error][mean-percentage-error]. If not provided input values `f` and `a`, the accumulator function returns the current [mean percentage error][mean-percentage-error]. 63 64 ```javascript 65 var accumulator = incrmmpe( 3 ); 66 67 var m = accumulator(); 68 // returns null 69 70 // Fill the window... 71 m = accumulator( 2.0, 3.0 ); // [(2.0,3.0)] 72 // returns ~33.33 73 74 m = accumulator( 1.0, 4.0 ); // [(2.0,3.0), (1.0,4.0)] 75 // returns ~54.17 76 77 m = accumulator( 3.0, 9.0 ); // [(2.0,3.0), (1.0,4.0), (3.0,9.0)] 78 // returns ~58.33 79 80 // Window begins sliding... 81 m = accumulator( 7.0, 3.0 ); // [(1.0,4.0), (3.0,9.0), (7.0,3.0)] 82 // returns ~2.78 83 84 m = accumulator( 5.0, 3.0 ); // [(3.0,9.0), (7.0,3.0), (5.0,3.0)] 85 // returns ~-44.44 86 87 m = accumulator(); 88 // returns ~-44.44 89 ``` 90 91 </section> 92 93 <!-- /.usage --> 94 95 <section class="notes"> 96 97 ## Notes 98 99 - Input values are **not** type checked. If provided `NaN` or a value which, when used in computations, results in `NaN`, the accumulated value is `NaN` for **at least** `W-1` future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly **before** passing the value to the accumulator function. 100 - As `W` (f,a) pairs are needed to fill the window buffer, the first `W-1` returned values are calculated from smaller sample sizes. Until the window is full, each returned value is calculated from all provided values. 101 - Be careful when interpreting the [mean percentage error][mean-percentage-error] as errors can cancel. This stated, that errors can cancel makes the [mean percentage error][mean-percentage-error] suitable for measuring the bias in forecasts. 102 - **Warning**: the [mean percentage error][mean-percentage-error] is **not** suitable for intermittent demand patterns (i.e., when `a_i` is `0`). Interpretation is most straightforward when actual and forecast values are positive valued (e.g., number of widgets sold). 103 104 </section> 105 106 <!-- /.notes --> 107 108 <section class="examples"> 109 110 ## Examples 111 112 <!-- eslint no-undef: "error" --> 113 114 ```javascript 115 var randu = require( '@stdlib/random/base/randu' ); 116 var incrmmpe = require( '@stdlib/stats/incr/mmpe' ); 117 118 var accumulator; 119 var v1; 120 var v2; 121 var i; 122 123 // Initialize an accumulator: 124 accumulator = incrmmpe( 5 ); 125 126 // For each simulated datum, update the moving mean percentage error... 127 for ( i = 0; i < 100; i++ ) { 128 v1 = ( randu()*100.0 ) + 50.0; 129 v2 = ( randu()*100.0 ) + 50.0; 130 accumulator( v1, v2 ); 131 } 132 console.log( accumulator() ); 133 ``` 134 135 </section> 136 137 <!-- /.examples --> 138 139 <section class="links"> 140 141 [mean-percentage-error]: https://en.wikipedia.org/wiki/Mean_percentage_error 142 143 </section> 144 145 <!-- /.links -->