time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (4747B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2018 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # incrmmpe
     22 
     23 > Compute a moving [mean percentage error][mean-percentage-error] (MPE) incrementally.
     24 
     25 <section class="intro">
     26 
     27 For a window of size `W`, the [mean percentage error][mean-percentage-error] is defined as
     28 
     29 <!-- <equation class="equation" label="eq:mean_percentage_error" align="center" raw="\operatorname{MPE}  = \frac{100}{W} \sum_{i=0}^{W-1} \frac{a_i - f_i}{a_i}" alt="Equation for the mean percentage error."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="\operatorname{MPE}  = \frac{100}{W} \sum_{i=0}^{W-1} \frac{a_i - f_i}{a_i}" data-equation="eq:mean_percentage_error">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@d97022bce00ceb9db681cb6cc8fb6c87ad86287f/lib/node_modules/@stdlib/stats/incr/mmpe/docs/img/equation_mean_percentage_error.svg" alt="Equation for the mean percentage error.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 where `f_i` is the forecast value and `a_i` is the actual value.
     39 
     40 </section>
     41 
     42 <!-- /.intro -->
     43 
     44 <section class="usage">
     45 
     46 ## Usage
     47 
     48 ```javascript
     49 var incrmmpe = require( '@stdlib/stats/incr/mmpe' );
     50 ```
     51 
     52 #### incrmmpe( window )
     53 
     54 Returns an accumulator `function` which incrementally computes a moving [mean percentage error][mean-percentage-error]. The `window` parameter defines the number of values over which to compute the moving [mean percentage error][mean-percentage-error].
     55 
     56 ```javascript
     57 var accumulator = incrmmpe( 3 );
     58 ```
     59 
     60 #### accumulator( \[f, a] )
     61 
     62 If provided input values `f` and `a`, the accumulator function returns an updated [mean percentage error][mean-percentage-error]. If not provided input values `f` and `a`, the accumulator function returns the current [mean percentage error][mean-percentage-error].
     63 
     64 ```javascript
     65 var accumulator = incrmmpe( 3 );
     66 
     67 var m = accumulator();
     68 // returns null
     69 
     70 // Fill the window...
     71 m = accumulator( 2.0, 3.0 ); // [(2.0,3.0)]
     72 // returns ~33.33
     73 
     74 m = accumulator( 1.0, 4.0 ); // [(2.0,3.0), (1.0,4.0)]
     75 // returns ~54.17
     76 
     77 m = accumulator( 3.0, 9.0 ); // [(2.0,3.0), (1.0,4.0), (3.0,9.0)]
     78 // returns ~58.33
     79 
     80 // Window begins sliding...
     81 m = accumulator( 7.0, 3.0 ); // [(1.0,4.0), (3.0,9.0), (7.0,3.0)]
     82 // returns ~2.78
     83 
     84 m = accumulator( 5.0, 3.0 ); // [(3.0,9.0), (7.0,3.0), (5.0,3.0)]
     85 // returns ~-44.44
     86 
     87 m = accumulator();
     88 // returns ~-44.44
     89 ```
     90 
     91 </section>
     92 
     93 <!-- /.usage -->
     94 
     95 <section class="notes">
     96 
     97 ## Notes
     98 
     99 -   Input values are **not** type checked. If provided `NaN` or a value which, when used in computations, results in `NaN`, the accumulated value is `NaN` for **at least** `W-1` future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly **before** passing the value to the accumulator function.
    100 -   As `W` (f,a) pairs are needed to fill the window buffer, the first `W-1` returned values are calculated from smaller sample sizes. Until the window is full, each returned value is calculated from all provided values.
    101 -   Be careful when interpreting the [mean percentage error][mean-percentage-error] as errors can cancel. This stated, that errors can cancel makes the [mean percentage error][mean-percentage-error] suitable for measuring the bias in forecasts. 
    102 -   **Warning**: the [mean percentage error][mean-percentage-error] is **not** suitable for intermittent demand patterns (i.e., when `a_i` is `0`). Interpretation is most straightforward when actual and forecast values are positive valued (e.g., number of widgets sold).
    103 
    104 </section>
    105 
    106 <!-- /.notes -->
    107 
    108 <section class="examples">
    109 
    110 ## Examples
    111 
    112 <!-- eslint no-undef: "error" -->
    113 
    114 ```javascript
    115 var randu = require( '@stdlib/random/base/randu' );
    116 var incrmmpe = require( '@stdlib/stats/incr/mmpe' );
    117 
    118 var accumulator;
    119 var v1;
    120 var v2;
    121 var i;
    122 
    123 // Initialize an accumulator:
    124 accumulator = incrmmpe( 5 );
    125 
    126 // For each simulated datum, update the moving mean percentage error...
    127 for ( i = 0; i < 100; i++ ) {
    128     v1 = ( randu()*100.0 ) + 50.0;
    129     v2 = ( randu()*100.0 ) + 50.0;
    130     accumulator( v1, v2 );
    131 }
    132 console.log( accumulator() );
    133 ```
    134 
    135 </section>
    136 
    137 <!-- /.examples -->
    138 
    139 <section class="links">
    140 
    141 [mean-percentage-error]: https://en.wikipedia.org/wiki/Mean_percentage_error
    142 
    143 </section>
    144 
    145 <!-- /.links -->