README.md (4370B)
1 <!-- 2 3 @license Apache-2.0 4 5 Copyright (c) 2018 The Stdlib Authors. 6 7 Licensed under the Apache License, Version 2.0 (the "License"); 8 you may not use this file except in compliance with the License. 9 You may obtain a copy of the License at 10 11 http://www.apache.org/licenses/LICENSE-2.0 12 13 Unless required by applicable law or agreed to in writing, software 14 distributed under the License is distributed on an "AS IS" BASIS, 15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 See the License for the specific language governing permissions and 17 limitations under the License. 18 19 --> 20 21 # incrmme 22 23 > Compute a moving [mean error][mean-absolute-error] (ME) incrementally. 24 25 <section class="intro"> 26 27 For a window of size `W`, the [mean error][mean-absolute-error] is defined as 28 29 <!-- <equation class="equation" label="eq:mean_error" align="center" raw="\operatorname{ME} = \frac{1}{W} \sum_{i=0}^{W-1} (y_i - x_i)" alt="Equation for the mean error."> --> 30 31 <div class="equation" align="center" data-raw-text="\operatorname{ME} = \frac{1}{W} \sum_{i=0}^{W-1} (y_i - x_i)" data-equation="eq:mean_error"> 32 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@634ac3689760e2f57fd51085f387d8dc5bb3b927/lib/node_modules/@stdlib/stats/incr/mme/docs/img/equation_mean_error.svg" alt="Equation for the mean error."> 33 <br> 34 </div> 35 36 <!-- </equation> --> 37 38 </section> 39 40 <!-- /.intro --> 41 42 <section class="usage"> 43 44 ## Usage 45 46 ```javascript 47 var incrmme = require( '@stdlib/stats/incr/mme' ); 48 ``` 49 50 #### incrmme( window ) 51 52 Returns an accumulator `function` which incrementally computes a moving [mean error][mean-absolute-error]. The `window` parameter defines the number of values over which to compute the moving [mean error][mean-absolute-error]. 53 54 ```javascript 55 var accumulator = incrmme( 3 ); 56 ``` 57 58 #### accumulator( \[x, y] ) 59 60 If provided input values `x` and `y`, the accumulator function returns an updated [mean error][mean-absolute-error]. If not provided input values `x` and `y`, the accumulator function returns the current [mean error][mean-absolute-error]. 61 62 ```javascript 63 var accumulator = incrmme( 3 ); 64 65 var m = accumulator(); 66 // returns null 67 68 // Fill the window... 69 m = accumulator( 2.0, 3.0 ); // [(2.0,3.0)] 70 // returns 1.0 71 72 m = accumulator( -1.0, 4.0 ); // [(2.0,3.0), (-1.0,4.0)] 73 // returns 3.0 74 75 m = accumulator( 3.0, 9.0 ); // [(2.0,3.0), (-1.0,4.0), (3.0,9.0)] 76 // returns 4.0 77 78 // Window begins sliding... 79 m = accumulator( -7.0, 3.0 ); // [(-1.0,4.0), (3.0,9.0), (-7.0,3.0)] 80 // returns 7.0 81 82 m = accumulator( -5.0, -3.0 ); // [(3.0,9.0), (-7.0,3.0), (-5.0,-3.0)] 83 // returns 6.0 84 85 m = accumulator(); 86 // returns 6.0 87 ``` 88 89 </section> 90 91 <!-- /.usage --> 92 93 <section class="notes"> 94 95 ## Notes 96 97 - Input values are **not** type checked. If provided `NaN` or a value which, when used in computations, results in `NaN`, the accumulated value is `NaN` for **at least** `W-1` future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly **before** passing the value to the accumulator function. 98 - As `W` (x,y) pairs are needed to fill the window buffer, the first `W-1` returned values are calculated from smaller sample sizes. Until the window is full, each returned value is calculated from all provided values. 99 - Be careful when interpreting the [mean error][mean-absolute-error] as errors can cancel. This stated, that errors can cancel makes the [mean error][mean-absolute-error] suitable for measuring the bias in forecasts. 100 - **Warning**: the [mean error][mean-absolute-error] is scale-dependent and, thus, the measure should **not** be used to make comparisons between datasets having different scales. 101 102 </section> 103 104 <!-- /.notes --> 105 106 <section class="examples"> 107 108 ## Examples 109 110 <!-- eslint no-undef: "error" --> 111 112 ```javascript 113 var randu = require( '@stdlib/random/base/randu' ); 114 var incrmme = require( '@stdlib/stats/incr/mme' ); 115 116 var accumulator; 117 var v1; 118 var v2; 119 var i; 120 121 // Initialize an accumulator: 122 accumulator = incrmme( 5 ); 123 124 // For each simulated datum, update the moving mean error... 125 for ( i = 0; i < 100; i++ ) { 126 v1 = ( randu()*100.0 ) - 50.0; 127 v2 = ( randu()*100.0 ) - 50.0; 128 accumulator( v1, v2 ); 129 } 130 console.log( accumulator() ); 131 ``` 132 133 </section> 134 135 <!-- /.examples --> 136 137 <section class="links"> 138 139 [mean-absolute-error]: https://en.wikipedia.org/wiki/Mean_absolute_error 140 141 </section> 142 143 <!-- /.links -->