README.md (4281B)
1 <!-- 2 3 @license Apache-2.0 4 5 Copyright (c) 2018 The Stdlib Authors. 6 7 Licensed under the Apache License, Version 2.0 (the "License"); 8 you may not use this file except in compliance with the License. 9 You may obtain a copy of the License at 10 11 http://www.apache.org/licenses/LICENSE-2.0 12 13 Unless required by applicable law or agreed to in writing, software 14 distributed under the License is distributed on an "AS IS" BASIS, 15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 See the License for the specific language governing permissions and 17 limitations under the License. 18 19 --> 20 21 # incrmmae 22 23 > Compute a moving [mean absolute error][mean-absolute-error] (MAE) incrementally. 24 25 <section class="intro"> 26 27 For a window of size `W`, the [mean absolute error][mean-absolute-error] is defined as 28 29 <!-- <equation class="equation" label="eq:mean_absolute_error" align="center" raw="\operatorname{MAE} = \frac{1}{W} \sum_{i=0}^{W-1} |y_i - x_i|" alt="Equation for the mean absolute error."> --> 30 31 <div class="equation" align="center" data-raw-text="\operatorname{MAE} = \frac{1}{W} \sum_{i=0}^{W-1} |y_i - x_i|" data-equation="eq:mean_absolute_error"> 32 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@2fd94e331f96b2984303ca92fad16757cfc5fdcb/lib/node_modules/@stdlib/stats/incr/mmae/docs/img/equation_mean_absolute_error.svg" alt="Equation for the mean absolute error."> 33 <br> 34 </div> 35 36 <!-- </equation> --> 37 38 </section> 39 40 <!-- /.intro --> 41 42 <section class="usage"> 43 44 ## Usage 45 46 ```javascript 47 var incrmmae = require( '@stdlib/stats/incr/mmae' ); 48 ``` 49 50 #### incrmmae( window ) 51 52 Returns an accumulator `function` which incrementally computes a moving [mean absolute error][mean-absolute-error]. The `window` parameter defines the number of values over which to compute the moving [mean absolute error][mean-absolute-error]. 53 54 ```javascript 55 var accumulator = incrmmae( 3 ); 56 ``` 57 58 #### accumulator( \[x, y] ) 59 60 If provided input values `x` and `y`, the accumulator function returns an updated [mean absolute error][mean-absolute-error]. If not provided input values `x` and `y`, the accumulator function returns the current [mean absolute error][mean-absolute-error]. 61 62 ```javascript 63 var accumulator = incrmmae( 3 ); 64 65 var m = accumulator(); 66 // returns null 67 68 // Fill the window... 69 m = accumulator( 2.0, 3.0 ); // [(2.0,3.0)] 70 // returns 1.0 71 72 m = accumulator( -1.0, 4.0 ); // [(2.0,3.0), (-1.0,4.0)] 73 // returns 3.0 74 75 m = accumulator( 3.0, 9.0 ); // [(2.0,3.0), (-1.0,4.0), (3.0,9.0)] 76 // returns 4.0 77 78 // Window begins sliding... 79 m = accumulator( -7.0, 3.0 ); // [(-1.0,4.0), (3.0,9.0), (-7.0,3.0)] 80 // returns 7.0 81 82 m = accumulator( -5.0, -3.0 ); // [(3.0,9.0), (-7.0,3.0), (-5.0,-3.0)] 83 // returns 6.0 84 85 m = accumulator(); 86 // returns 6.0 87 ``` 88 89 </section> 90 91 <!-- /.usage --> 92 93 <section class="notes"> 94 95 ## Notes 96 97 - Input values are **not** type checked. If provided `NaN` or a value which, when used in computations, results in `NaN`, the accumulated value is `NaN` for **at least** `W-1` future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly **before** passing the value to the accumulator function. 98 - As `W` (x,y) pairs are needed to fill the window buffer, the first `W-1` returned values are calculated from smaller sample sizes. Until the window is full, each returned value is calculated from all provided values. 99 - **Warning**: the [mean absolute error][mean-absolute-error] is scale-dependent and, thus, the measure should **not** be used to make comparisons between datasets having different scales. 100 101 </section> 102 103 <!-- /.notes --> 104 105 <section class="examples"> 106 107 ## Examples 108 109 <!-- eslint no-undef: "error" --> 110 111 ```javascript 112 var randu = require( '@stdlib/random/base/randu' ); 113 var incrmmae = require( '@stdlib/stats/incr/mmae' ); 114 115 var accumulator; 116 var v1; 117 var v2; 118 var i; 119 120 // Initialize an accumulator: 121 accumulator = incrmmae( 5 ); 122 123 // For each simulated datum, update the moving mean absolute error... 124 for ( i = 0; i < 100; i++ ) { 125 v1 = ( randu()*100.0 ) - 50.0; 126 v2 = ( randu()*100.0 ) - 50.0; 127 accumulator( v1, v2 ); 128 } 129 console.log( accumulator() ); 130 ``` 131 132 </section> 133 134 <!-- /.examples --> 135 136 <section class="links"> 137 138 [mean-absolute-error]: https://en.wikipedia.org/wiki/Mean_absolute_error 139 140 </section> 141 142 <!-- /.links -->