README.md (3613B)
1 <!-- 2 3 @license Apache-2.0 4 5 Copyright (c) 2018 The Stdlib Authors. 6 7 Licensed under the Apache License, Version 2.0 (the "License"); 8 you may not use this file except in compliance with the License. 9 You may obtain a copy of the License at 10 11 http://www.apache.org/licenses/LICENSE-2.0 12 13 Unless required by applicable law or agreed to in writing, software 14 distributed under the License is distributed on an "AS IS" BASIS, 15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 See the License for the specific language governing permissions and 17 limitations under the License. 18 19 --> 20 21 # incrme 22 23 > Compute the [mean error][mean-absolute-error] (ME) incrementally. 24 25 <section class="intro"> 26 27 The [mean error][mean-absolute-error] is defined as 28 29 <!-- <equation class="equation" label="eq:mean_error" align="center" raw="\operatorname{ME} = \frac{1}{n} \sum_{i=0}^{n-1} (y_i - x_i)" alt="Equation for the mean error."> --> 30 31 <div class="equation" align="center" data-raw-text="\operatorname{ME} = \frac{1}{n} \sum_{i=0}^{n-1} (y_i - x_i)" data-equation="eq:mean_error"> 32 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@7d6e6319f451be0997d35a6cf491b08e1f2cb5cf/lib/node_modules/@stdlib/stats/incr/me/docs/img/equation_mean_error.svg" alt="Equation for the mean error."> 33 <br> 34 </div> 35 36 <!-- </equation> --> 37 38 </section> 39 40 <!-- /.intro --> 41 42 <section class="usage"> 43 44 ## Usage 45 46 ```javascript 47 var incrme = require( '@stdlib/stats/incr/me' ); 48 ``` 49 50 #### incrme() 51 52 Returns an accumulator `function` which incrementally computes the [mean error][mean-absolute-error]. 53 54 ```javascript 55 var accumulator = incrme(); 56 ``` 57 58 #### accumulator( \[x, y] ) 59 60 If provided input values `x` and `y`, the accumulator function returns an updated [mean error][mean-absolute-error]. If not provided input values `x` and `y`, the accumulator function returns the current [mean error][mean-absolute-error]. 61 62 ```javascript 63 var accumulator = incrme(); 64 65 var m = accumulator( 2.0, 3.0 ); 66 // returns 1.0 67 68 m = accumulator( -1.0, -4.0 ); 69 // returns -1.0 70 71 m = accumulator( -3.0, 5.0 ); 72 // returns 2.0 73 74 m = accumulator(); 75 // returns 2.0 76 ``` 77 78 </section> 79 80 <!-- /.usage --> 81 82 <section class="notes"> 83 84 ## Notes 85 86 - Input values are **not** type checked. If provided `NaN` or a value which, when used in computations, results in `NaN`, the accumulated value is `NaN` for **all** future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly **before** passing the value to the accumulator function. 87 - Be careful when interpreting the [mean error][mean-absolute-error] as errors can cancel. This stated, that errors can cancel makes the [mean error][mean-absolute-error] suitable for measuring the bias in forecasts. 88 - **Warning**: the [mean error][mean-absolute-error] is scale-dependent and, thus, the measure should **not** be used to make comparisons between datasets having different scales. 89 90 </section> 91 92 <!-- /.notes --> 93 94 <section class="examples"> 95 96 ## Examples 97 98 <!-- eslint no-undef: "error" --> 99 100 ```javascript 101 var randu = require( '@stdlib/random/base/randu' ); 102 var incrme = require( '@stdlib/stats/incr/me' ); 103 104 var accumulator; 105 var v1; 106 var v2; 107 var i; 108 109 // Initialize an accumulator: 110 accumulator = incrme(); 111 112 // For each simulated datum, update the mean error... 113 for ( i = 0; i < 100; i++ ) { 114 v1 = ( randu()*100.0 ) - 50.0; 115 v2 = ( randu()*100.0 ) - 50.0; 116 accumulator( v1, v2 ); 117 } 118 console.log( accumulator() ); 119 ``` 120 121 </section> 122 123 <!-- /.examples --> 124 125 <section class="links"> 126 127 [mean-absolute-error]: https://en.wikipedia.org/wiki/Mean_absolute_error 128 129 </section> 130 131 <!-- /.links -->