time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (6082B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2018 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # incrmcv
     22 
     23 > Compute a moving [coefficient of variation][coefficient-of-variation] (CV) incrementally.
     24 
     25 <section class="intro">
     26 
     27 For a window of size `W`, the [corrected sample standard deviation][standard-deviation] is defined as
     28 
     29 <!-- <equation class="equation" label="eq:corrected_sample_standard_deviation" align="center" raw="s = \sqrt{\frac{1}{W-1} \sum_{i=0}^{W-1} ( x_i - \bar{x} )^2}" alt="Equation for the corrected sample standard deviation."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="s = \sqrt{\frac{1}{W-1} \sum_{i=0}^{W-1} ( x_i - \bar{x} )^2}" data-equation="eq:corrected_sample_standard_deviation">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@eed6b690d7c37249b04544b3f5fd36ad8eb3187f/lib/node_modules/@stdlib/stats/incr/mcv/docs/img/equation_corrected_sample_standard_deviation.svg" alt="Equation for the corrected sample standard deviation.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 and the [arithmetic mean][arithmetic-mean] is defined as
     39 
     40 <!-- <equation class="equation" label="eq:arithmetic_mean" align="center" raw="\bar{x} = \frac{1}{W} \sum_{i=0}^{W-1} x_i" alt="Equation for the arithmetic mean."> -->
     41 
     42 <div class="equation" align="center" data-raw-text="\bar{x} = \frac{1}{W} \sum_{i=0}^{W-1} x_i" data-equation="eq:arithmetic_mean">
     43     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@4cf17e4e25cc2244d5154bd5d251f4bd023748da/lib/node_modules/@stdlib/stats/incr/mcv/docs/img/equation_arithmetic_mean.svg" alt="Equation for the arithmetic mean.">
     44     <br>
     45 </div>
     46 
     47 <!-- </equation> -->
     48 
     49 The [coefficient of variation][coefficient-of-variation] (also known as **relative standard deviation**, RSD) is defined as
     50 
     51 <!-- <equation class="equation" label="eq:coefficient_of_variation" align="center" raw="c_v = \frac{s}{\bar{x}}" alt="Equation for the coefficient of variation (CV)."> -->
     52 
     53 <div class="equation" align="center" data-raw-text="c_v = \frac{s}{\bar{x}}" data-equation="eq:coefficient_of_variation">
     54     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@eed6b690d7c37249b04544b3f5fd36ad8eb3187f/lib/node_modules/@stdlib/stats/incr/mcv/docs/img/equation_coefficient_of_variation.svg"Equation for the coefficient of variation (CV).">
     55     <br>
     56 </div>
     57 
     58 <!-- </equation> -->
     59 
     60 </section>
     61 
     62 <!-- /.intro -->
     63 
     64 <section class="usage">
     65 
     66 ## Usage
     67 
     68 ```javascript
     69 var incrmcv = require( '@stdlib/stats/incr/mcv' );
     70 ```
     71 
     72 #### incrmcv( window\[, mean] )
     73 
     74 Returns an accumulator `function` which incrementally computes a moving [coefficient of variation][coefficient-of-variation]. The `window` parameter defines the number of values over which to compute the moving [coefficient of variation][coefficient-of-variation].
     75 
     76 ```javascript
     77 var accumulator = incrmcv( 3 );
     78 ```
     79 
     80 If the mean is already known, provide a `mean` argument.
     81 
     82 ```javascript
     83 var accumulator = incrmcv( 3, 5.0 );
     84 ```
     85 
     86 #### accumulator( \[x] )
     87 
     88 If provided an input value `x`, the accumulator function returns an updated accumulated value. If not provided an input value `x`, the accumulator function returns the current accumulated value.
     89 
     90 ```javascript
     91 var accumulator = incrmcv( 3 );
     92 
     93 var cv = accumulator();
     94 // returns null
     95 
     96 // Fill the window...
     97 cv = accumulator( 2.0 ); // [2.0]
     98 // returns 0.0
     99 
    100 cv = accumulator( 1.0 ); // [2.0, 1.0]
    101 // returns ~0.47
    102 
    103 cv = accumulator( 3.0 ); // [2.0, 1.0, 3.0]
    104 // returns 0.5
    105 
    106 // Window begins sliding...
    107 cv = accumulator( 7.0 ); // [1.0, 3.0, 7.0]
    108 // returns ~0.83
    109 
    110 cv = accumulator( 5.0 ); // [3.0, 7.0, 5.0]
    111 // returns ~0.40
    112 
    113 cv = accumulator();
    114 // returns ~0.40
    115 ```
    116 
    117 </section>
    118 
    119 <!-- /.usage -->
    120 
    121 <section class="notes">
    122 
    123 ## Notes
    124 
    125 -   Input values are **not** type checked. If provided `NaN` or a value which, when used in computations, results in `NaN`, the accumulated value is `NaN` for **at least** `W-1` future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly **before** passing the value to the accumulator function.
    126 -   As `W` values are needed to fill the window buffer, the first `W-1` returned values are calculated from smaller sample sizes. Until the window is full, each returned value is calculated from all provided values.
    127 -   The [coefficient of variation][coefficient-of-variation] is typically computed on nonnegative values. The measure may lack meaning for data which can assume both positive and negative values.
    128 -   For small and moderately sized samples, the accumulated value tends to be too low and is thus a **biased** estimator. Provided the generating distribution is known (e.g., a normal distribution), you may want to adjust the accumulated value or use an alternative implementation providing an unbiased estimator.
    129 
    130 </section>
    131 
    132 <!-- /.notes -->
    133 
    134 <section class="examples">
    135 
    136 ## Examples
    137 
    138 <!-- eslint no-undef: "error" -->
    139 
    140 ```javascript
    141 var randu = require( '@stdlib/random/base/randu' );
    142 var incrmcv = require( '@stdlib/stats/incr/mcv' );
    143 
    144 var accumulator;
    145 var v;
    146 var i;
    147 
    148 // Initialize an accumulator:
    149 accumulator = incrmcv( 5 );
    150 
    151 // For each simulated datum, update the moving coefficient of variation...
    152 for ( i = 0; i < 100; i++ ) {
    153     v = randu() * 100.0;
    154     accumulator( v );
    155 }
    156 console.log( accumulator() );
    157 ```
    158 
    159 </section>
    160 
    161 <!-- /.examples -->
    162 
    163 <section class="links">
    164 
    165 [coefficient-of-variation]: https://en.wikipedia.org/wiki/Coefficient_of_variation
    166 
    167 [arithmetic-mean]: https://en.wikipedia.org/wiki/Arithmetic_mean
    168 
    169 [standard-deviation]: https://en.wikipedia.org/wiki/Standard_deviation
    170 
    171 </section>
    172 
    173 <!-- /.links -->