README.md (4248B)
1 <!-- 2 3 @license Apache-2.0 4 5 Copyright (c) 2018 The Stdlib Authors. 6 7 Licensed under the Apache License, Version 2.0 (the "License"); 8 you may not use this file except in compliance with the License. 9 You may obtain a copy of the License at 10 11 http://www.apache.org/licenses/LICENSE-2.0 12 13 Unless required by applicable law or agreed to in writing, software 14 distributed under the License is distributed on an "AS IS" BASIS, 15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 See the License for the specific language governing permissions and 17 limitations under the License. 18 19 --> 20 21 # incrmape 22 23 > Compute the [mean absolute percentage error][mean-absolute-percentage-error] (MAPE) incrementally. 24 25 <section class="intro"> 26 27 The [mean absolute percentage error][mean-absolute-percentage-error] is defined as 28 29 <!-- <equation class="equation" label="eq:mean_absolute_percentage_error" align="center" raw="\operatorname{MAPE} = \frac{100}{n} \sum_{i=0}^{n-1} \biggl| \frac{a_i - f_i}{a_i} \biggr|" alt="Equation for the mean absolute percentage error."> --> 30 31 <div class="equation" align="center" data-raw-text="\operatorname{MAPE} = \frac{100}{n} \sum_{i=0}^{n-1} \biggl| \frac{a_i - f_i}{a_i} \biggr|" data-equation="eq:mean_absolute_percentage_error"> 32 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@d4867162fd6445b10f93ca01f3f764bc646662d8/lib/node_modules/@stdlib/stats/incr/mape/docs/img/equation_mean_absolute_percentage_error.svg" alt="Equation for the mean absolute percentage error."> 33 <br> 34 </div> 35 36 <!-- </equation> --> 37 38 where `f_i` is the forecast value and `a_i` is the actual value. 39 40 </section> 41 42 <!-- /.intro --> 43 44 <section class="usage"> 45 46 ## Usage 47 48 ```javascript 49 var incrmape = require( '@stdlib/stats/incr/mape' ); 50 ``` 51 52 #### incrmape() 53 54 Returns an accumulator `function` which incrementally computes the [mean absolute percentage error][mean-absolute-percentage-error]. 55 56 ```javascript 57 var accumulator = incrmape(); 58 ``` 59 60 #### accumulator( \[f, a] ) 61 62 If provided input values `f` and `a`, the accumulator function returns an updated [mean absolute percentage error][mean-absolute-percentage-error]. If not provided input values `f` and `a`, the accumulator function returns the current [mean absolute percentage error][mean-absolute-percentage-error]. 63 64 ```javascript 65 var accumulator = incrmape(); 66 67 var m = accumulator( 2.0, 3.0 ); 68 // returns ~33.33 69 70 m = accumulator( 1.0, 4.0 ); 71 // returns ~54.17 72 73 m = accumulator( 3.0, 5.0 ); 74 // returns ~49.44 75 76 m = accumulator(); 77 // returns ~49.44 78 ``` 79 80 </section> 81 82 <!-- /.usage --> 83 84 <section class="notes"> 85 86 ## Notes 87 88 - Input values are **not** type checked. If provided `NaN` or a value which, when used in computations, results in `NaN`, the accumulated value is `NaN` for **all** future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly **before** passing the value to the accumulator function. 89 90 - **Warning**: the [mean absolute percentage error][mean-absolute-percentage-error] has several shortcomings: 91 92 - The measure is **not** suitable for intermittent demand patterns (i.e., when `a_i` is `0`). 93 - The [mean absolute percentage error][mean-absolute-percentage-error] is not symmetrical, as the measure cannot exceed 100% for forecasts which are too "low" and has no limit for forecasts which are too "high". 94 - When used to compare the accuracy of forecast models (e.g., predicting demand), the measure is biased toward forecasts which are too low. 95 96 </section> 97 98 <!-- /.notes --> 99 100 <section class="examples"> 101 102 ## Examples 103 104 <!-- eslint no-undef: "error" --> 105 106 ```javascript 107 var randu = require( '@stdlib/random/base/randu' ); 108 var incrmape = require( '@stdlib/stats/incr/mape' ); 109 110 var accumulator; 111 var v1; 112 var v2; 113 var i; 114 115 // Initialize an accumulator: 116 accumulator = incrmape(); 117 118 // For each simulated datum, update the mean absolute percentage error... 119 for ( i = 0; i < 100; i++ ) { 120 v1 = ( randu()*100.0 ) + 50.0; 121 v2 = ( randu()*100.0 ) + 50.0; 122 accumulator( v1, v2 ); 123 } 124 console.log( accumulator() ); 125 ``` 126 127 </section> 128 129 <!-- /.examples --> 130 131 <section class="links"> 132 133 [mean-absolute-percentage-error]: https://en.wikipedia.org/wiki/Mean_absolute_percentage_error 134 135 </section> 136 137 <!-- /.links -->