README.md (3512B)
1 <!-- 2 3 @license Apache-2.0 4 5 Copyright (c) 2018 The Stdlib Authors. 6 7 Licensed under the Apache License, Version 2.0 (the "License"); 8 you may not use this file except in compliance with the License. 9 You may obtain a copy of the License at 10 11 http://www.apache.org/licenses/LICENSE-2.0 12 13 Unless required by applicable law or agreed to in writing, software 14 distributed under the License is distributed on an "AS IS" BASIS, 15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 See the License for the specific language governing permissions and 17 limitations under the License. 18 19 --> 20 21 # incrmae 22 23 > Compute the [mean absolute error][mean-absolute-error] (MAE) incrementally. 24 25 <section class="intro"> 26 27 The [mean absolute error][mean-absolute-error] is defined as 28 29 <!-- <equation class="equation" label="eq:mean_absolute_error" align="center" raw="\operatorname{MAE} = \frac{\sum_{i=0}^{n-1} |y_i - x_i|}{n}" alt="Equation for the mean absolute error."> --> 30 31 <div class="equation" align="center" data-raw-text="\operatorname{MAE} = \frac{\sum_{i=0}^{n-1} |y_i - x_i|}{n}" data-equation="eq:mean_absolute_error"> 32 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@49d8cabda84033d55d7b8069f19ee3dd8b8d1496/lib/node_modules/@stdlib/stats/incr/mae/docs/img/equation_mean_absolute_error.svg" alt="Equation for the mean absolute error."> 33 <br> 34 </div> 35 36 <!-- </equation> --> 37 38 </section> 39 40 <!-- /.intro --> 41 42 <section class="usage"> 43 44 ## Usage 45 46 ```javascript 47 var incrmae = require( '@stdlib/stats/incr/mae' ); 48 ``` 49 50 #### incrmae() 51 52 Returns an accumulator `function` which incrementally computes the [mean absolute error][mean-absolute-error]. 53 54 ```javascript 55 var accumulator = incrmae(); 56 ``` 57 58 #### accumulator( \[x, y] ) 59 60 If provided input values `x` and `y`, the accumulator function returns an updated [mean absolute error][mean-absolute-error]. If not provided input values `x` and `y`, the accumulator function returns the current [mean absolute error][mean-absolute-error]. 61 62 ```javascript 63 var accumulator = incrmae(); 64 65 var m = accumulator( 2.0, 3.0 ); 66 // returns 1.0 67 68 m = accumulator( -1.0, -4.0 ); 69 // returns 2.0 70 71 m = accumulator( -3.0, 5.0 ); 72 // returns 4.0 73 74 m = accumulator(); 75 // returns 4.0 76 ``` 77 78 </section> 79 80 <!-- /.usage --> 81 82 <section class="notes"> 83 84 ## Notes 85 86 - Input values are **not** type checked. If provided `NaN` or a value which, when used in computations, results in `NaN`, the accumulated value is `NaN` for **all** future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly **before** passing the value to the accumulator function. 87 - **Warning**: the [mean absolute error][mean-absolute-error] is scale-dependent and, thus, the measure should **not** be used to make comparisons between datasets having different scales. 88 89 </section> 90 91 <!-- /.notes --> 92 93 <section class="examples"> 94 95 ## Examples 96 97 <!-- eslint no-undef: "error" --> 98 99 ```javascript 100 var randu = require( '@stdlib/random/base/randu' ); 101 var incrmae = require( '@stdlib/stats/incr/mae' ); 102 103 var accumulator; 104 var v1; 105 var v2; 106 var i; 107 108 // Initialize an accumulator: 109 accumulator = incrmae(); 110 111 // For each simulated datum, update the mean absolute error... 112 for ( i = 0; i < 100; i++ ) { 113 v1 = ( randu()*100.0 ) - 50.0; 114 v2 = ( randu()*100.0 ) - 50.0; 115 accumulator( v1, v2 ); 116 } 117 console.log( accumulator() ); 118 ``` 119 120 </section> 121 122 <!-- /.examples --> 123 124 <section class="links"> 125 126 [mean-absolute-error]: https://en.wikipedia.org/wiki/Mean_absolute_error 127 128 </section> 129 130 <!-- /.links -->