time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

main.js (3350B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2018 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var isnan = require( '@stdlib/math/base/assert/is-nan' );
     24 
     25 
     26 // MAIN //
     27 
     28 /**
     29 * Returns an accumulator function which incrementally computes a corrected sample excess kurtosis.
     30 *
     31 * ## Method
     32 *
     33 * The algorithm computes the sample excess kurtosis using the formula for `G_2` in [Joanes and Gill 1998][@joanes:1998]. In contrast to alternatives for calculating a sample kurtosis, `G_2` is an unbiased estimator under normality.
     34 *
     35 * ## References
     36 *
     37 * -   Joanes, D. N., and C. A. Gill. 1998. "Comparing measures of sample skewness and kurtosis." _Journal of the Royal Statistical Society: Series D (The Statistician)_ 47 (1). Blackwell Publishers Ltd: 183–89. doi:[10.1111/1467-9884.00122][@joanes:1998].
     38 *
     39 * [@joanes:1998]: http://dx.doi.org/10.1111/1467-9884.00122
     40 *
     41 * @returns {Function} accumulator function
     42 *
     43 * @example
     44 * var accumulator = incrkurtosis();
     45 *
     46 * var kurtosis = accumulator();
     47 * // returns null
     48 *
     49 * kurtosis = accumulator( 2.0 );
     50 * // returns null
     51 *
     52 * kurtosis = accumulator( 2.0 );
     53 * // returns null
     54 *
     55 * kurtosis = accumulator( -4.0 );
     56 * // returns null
     57 *
     58 * kurtosis = accumulator( -4.0 );
     59 * // returns -6.0
     60 */
     61 function incrkurtosis() {
     62 	var deltaN2;
     63 	var deltaN;
     64 	var delta;
     65 	var term1;
     66 	var mean;
     67 	var tmp;
     68 	var g2;
     69 	var M2;
     70 	var M3;
     71 	var M4;
     72 	var N;
     73 
     74 	deltaN2 = 0.0;
     75 	deltaN = 0.0;
     76 	delta = 0.0;
     77 	term1 = 0.0;
     78 	mean = 0.0;
     79 	M2 = 0.0;
     80 	M3 = 0.0;
     81 	M4 = 0.0;
     82 	N = 0;
     83 
     84 	return accumulator;
     85 
     86 	/**
     87 	* If provided a value, the accumulator function returns an updated corrected sample excess kurtosis. If not provided a value, the accumulator function returns the current corrected sample excess kurtosis.
     88 	*
     89 	* @private
     90 	* @param {number} [x] - new value
     91 	* @returns {(number|null)} corrected sample excess kurtosis
     92 	*/
     93 	function accumulator( x ) {
     94 		if ( arguments.length === 0 ) {
     95 			if ( N < 4 ) {
     96 				return ( isnan( M4 ) ) ? NaN : null;
     97 			}
     98 			// Calculate the population excess kurtosis:
     99 			g2 = (( N*M4 ) / ( M2*M2 )) - 3.0;
    100 
    101 			// Return the corrected sample excess kurtosis:
    102 			return (N-1) / ( (N-2)*(N-3) ) * ( ((N+1)*g2) + 6.0 );
    103 		}
    104 		N += 1;
    105 		delta = x - mean;
    106 		deltaN = delta / N;
    107 		deltaN2 = deltaN * deltaN;
    108 
    109 		term1 = delta * deltaN * (N-1);
    110 
    111 		tmp = term1 * deltaN2 * ((N*N) - (3*N) + 3);
    112 		tmp += 6.0 * deltaN2 * M2;
    113 		tmp -= 4.0 * deltaN * M3;
    114 		M4 += tmp;
    115 
    116 		tmp = term1 * deltaN * (N-2);
    117 		tmp -= 3.0 * deltaN * M2;
    118 		M3 += tmp;
    119 
    120 		M2 += term1;
    121 		mean += deltaN;
    122 		if ( N < 4 ) {
    123 			return ( isnan( M4 ) ) ? NaN : null;
    124 		}
    125 		// Calculate the population excess kurtosis:
    126 		g2 = (N*M4 / ( M2*M2 )) - 3.0;
    127 
    128 		// Return the corrected sample excess kurtosis:
    129 		return (N-1) / ( (N-2)*(N-3) ) * ( ((N+1)*g2) + 6.0 );
    130 	}
    131 }
    132 
    133 
    134 // EXPORTS //
    135 
    136 module.exports = incrkurtosis;