time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (6006B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2018 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # incrkurtosis
     22 
     23 > Compute a [corrected sample excess kurtosis][sample-excess-kurtosis] incrementally.
     24 
     25 <section class="intro">
     26 
     27 The [kurtosis][sample-excess-kurtosis] for a random variable `X` is defined as
     28 
     29 <!-- <equation class="equation" label="eq:kurtosis" align="center" raw="\operatorname{Kurtosis}[X] = \mathrm{E}\biggl[ \biggl( \frac{X - \mu}{\sigma} \biggr)^4 \biggr]" alt="Equation for the kurtosis."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="\operatorname{Kurtosis}[X] = \mathrm{E}\biggl[ \biggl( \frac{X - \mu}{\sigma} \biggr)^4 \biggr]" data-equation="eq:kurtosis">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@49d8cabda84033d55d7b8069f19ee3dd8b8d1496/lib/node_modules/@stdlib/stats/incr/kurtosis/docs/img/equation_kurtosis.svg" alt="Equation for the kurtosis.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 Using a univariate normal distribution as the standard of comparison, the [excess kurtosis][sample-excess-kurtosis] is the kurtosis minus `3`.
     39 
     40 For a sample of `n` values, the [sample excess kurtosis][sample-excess-kurtosis] is
     41 
     42 <!-- <equation class="equation" label="eq:sample_excess_kurtosis" align="center" raw="g_2 = \frac{m_4}{m_2^2} - 3 = \frac{\frac{1}{n} \sum_{i=0}^{n-1} (x_i - \bar{x})^4}{\biggl(\frac{1}{n} \sum_{i=0}^{n-1} (x_i - \bar{x})^2\biggr)^2}" alt="Equation for the sample excess kurtosis."> -->
     43 
     44 <div class="equation" align="center" data-raw-text="g_2 = \frac{m_4}{m_2^2} - 3 = \frac{\frac{1}{n} \sum_{i=0}^{n-1} (x_i - \bar{x})^4}{\biggl(\frac{1}{n} \sum_{i=0}^{n-1} (x_i - \bar{x})^2\biggr)^2}" data-equation="eq:sample_excess_kurtosis">
     45     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@49d8cabda84033d55d7b8069f19ee3dd8b8d1496/lib/node_modules/@stdlib/stats/incr/kurtosis/docs/img/equation_sample_excess_kurtosis.svg" alt="Equation for the sample excess kurtosis.">
     46     <br>
     47 </div>
     48 
     49 <!-- </equation> -->
     50 
     51 where `m_4` is the sample fourth central moment and `m_2` is the sample second central moment.
     52 
     53 The previous equation is, however, a biased estimator of the population excess kurtosis. An alternative estimator which is unbiased under normality is
     54 
     55 <!-- <equation class="equation" label="eq:corrected_sample_excess_kurtosis" align="center" raw="G_2 = \frac{(n+1)n}{(n-1)(n-2)(n-3)} \frac{\sum_{i=0}^{n-1} (x_i - \bar{x})^4}{\biggl(\sum_{i=0}^{n-1} (x_i - \bar{x})^2\biggr)^2} - 3 \frac{(n-1)^2}{(n-2)(n-3)}" alt="Equation for the corrected sample excess kurtosis."> -->
     56 
     57 <div class="equation" align="center" data-raw-text="G_2 = \frac{(n+1)n}{(n-1)(n-2)(n-3)} \frac{\sum_{i=0}^{n-1} (x_i - \bar{x})^4}{\biggl(\sum_{i=0}^{n-1} (x_i - \bar{x})^2\biggr)^2} - 3 \frac{(n-1)^2}{(n-2)(n-3)}" data-equation="eq:corrected_sample_excess_kurtosis">
     58     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@49d8cabda84033d55d7b8069f19ee3dd8b8d1496/lib/node_modules/@stdlib/stats/incr/kurtosis/docs/img/equation_corrected_sample_excess_kurtosis.svg" alt="Equation for the corrected sample excess kurtosis.">
     59     <br>
     60 </div>
     61 
     62 <!-- </equation> -->
     63 
     64 </section>
     65 
     66 <!-- /.intro -->
     67 
     68 <section class="usage">
     69 
     70 ## Usage
     71 
     72 ```javascript
     73 var incrkurtosis = require( '@stdlib/stats/incr/kurtosis' );
     74 ```
     75 
     76 #### incrkurtosis()
     77 
     78 Returns an accumulator `function` which incrementally computes a [corrected sample excess kurtosis][sample-excess-kurtosis].
     79 
     80 ```javascript
     81 var accumulator = incrkurtosis();
     82 ```
     83 
     84 #### accumulator( \[x] )
     85 
     86 If provided an input value `x`, the accumulator function returns an updated [corrected sample excess kurtosis][sample-excess-kurtosis]. If not provided an input value `x`, the accumulator function returns the current [corrected sample excess kurtosis][sample-excess-kurtosis].
     87 
     88 ```javascript
     89 var accumulator = incrkurtosis();
     90 
     91 var kurtosis = accumulator( 2.0 );
     92 // returns null
     93 
     94 kurtosis = accumulator( 2.0 );
     95 // returns null
     96 
     97 kurtosis = accumulator( -4.0 );
     98 // returns null
     99 
    100 kurtosis = accumulator( -4.0 );
    101 // returns -6.0
    102 ```
    103 
    104 </section>
    105 
    106 <!-- /.usage -->
    107 
    108 <section class="notes">
    109 
    110 ## Notes
    111 
    112 -   Input values are **not** type checked. If provided `NaN` or a value which, when used in computations, results in `NaN`, the accumulated value is `NaN` for **all** future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly **before** passing the value to the accumulator function.
    113 
    114 </section>
    115 
    116 <!-- /.notes -->
    117 
    118 <section class="examples">
    119 
    120 ## Examples
    121 
    122 <!-- eslint no-undef: "error" -->
    123 
    124 ```javascript
    125 var randu = require( '@stdlib/random/base/randu' );
    126 var incrkurtosis = require( '@stdlib/stats/incr/kurtosis' );
    127 
    128 var accumulator;
    129 var v;
    130 var i;
    131 
    132 // Initialize an accumulator:
    133 accumulator = incrkurtosis();
    134 
    135 // For each simulated datum, update the corrected sample excess kurtosis...
    136 for ( i = 0; i < 100; i++ ) {
    137     v = randu() * 100.0;
    138     accumulator( v );
    139 }
    140 console.log( accumulator() );
    141 ```
    142 
    143 </section>
    144 
    145 <!-- /.examples -->
    146 
    147 * * *
    148 
    149 <section class="references">
    150 
    151 ## References
    152 
    153 -   Joanes, D. N., and C. A. Gill. 1998. "Comparing measures of sample skewness and kurtosis." _Journal of the Royal Statistical Society: Series D (The Statistician)_ 47 (1). Blackwell Publishers Ltd: 183–89. doi:[10.1111/1467-9884.00122][@joanes:1998].
    154 
    155 </section>
    156 
    157 <!-- /.references -->
    158 
    159 <section class="links">
    160 
    161 [sample-excess-kurtosis]: https://en.wikipedia.org/wiki/Kurtosis
    162 
    163 [@joanes:1998]: http://onlinelibrary.wiley.com/doi/10.1111/1467-9884.00122/
    164 
    165 </section>
    166 
    167 <!-- /.links -->