time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (3519B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2018 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # increwmean
     22 
     23 > Compute an [exponentially weighted mean][moving-average] incrementally.
     24 
     25 <section class="intro">
     26 
     27 An [exponentially weighted mean][moving-average] can be defined recursively as
     28 
     29 <!-- <equation class="equation" label="eq:exponentially_weighted_mean" align="center" raw="\mu_t = \begin{cases} x_0 & \textrm{if}\ t = 0 \\ \alpha x_t + (1-\alpha) \mu_{t-1} & \textrm{if}\ t > 0 \end{cases}" alt="Recursive definition for computing an exponentially weighted mean."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="\mu_t = \begin{cases} x_0 &amp; \textrm{if}\ t = 0 \\ \alpha x_t + (1-\alpha) \mu_{t-1} &amp; \textrm{if}\ t &gt; 0 \end{cases}" data-equation="eq:exponentially_weighted_mean">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@1445ad5c454bc3c1a86bde2be87d6cec87781174/lib/node_modules/@stdlib/stats/incr/ewmean/docs/img/equation_exponentially_weighted_mean.svg" alt="Recursive definition for computing an exponentially weighted mean.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 </section>
     39 
     40 <!-- /.intro -->
     41 
     42 <section class="usage">
     43 
     44 ## Usage
     45 
     46 ```javascript
     47 var increwmean = require( '@stdlib/stats/incr/ewmean' );
     48 ```
     49 
     50 #### increwmean( alpha )
     51 
     52 Returns an accumulator `function` which incrementally computes an [exponentially weighted mean][moving-average], where `alpha` is a smoothing factor between `0` and `1`.
     53 
     54 ```javascript
     55 var accumulator = increwmean( 0.5 );
     56 ```
     57 
     58 #### accumulator( \[x] )
     59 
     60 If provided an input value `x`, the accumulator function returns an updated mean. If not provided an input value `x`, the accumulator function returns the current mean.
     61 
     62 ```javascript
     63 var accumulator = increwmean( 0.5 );
     64 
     65 var v = accumulator();
     66 // returns null
     67 
     68 v = accumulator( 2.0 );
     69 // returns 2.0
     70 
     71 v = accumulator( 1.0 );
     72 // returns 1.5
     73 
     74 v = accumulator( 3.0 );
     75 // returns 2.25
     76 
     77 v = accumulator();
     78 // returns 2.25
     79 ```
     80 
     81 </section>
     82 
     83 <!-- /.usage -->
     84 
     85 <section class="notes">
     86 
     87 ## Notes
     88 
     89 -   Input values are **not** type checked. If provided `NaN` or a value which, when used in computations, results in `NaN`, the accumulated value is `NaN` for **all** future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly **before** passing the value to the accumulator function.
     90 
     91 </section>
     92 
     93 <!-- /.notes -->
     94 
     95 <section class="examples">
     96 
     97 ## Examples
     98 
     99 <!-- eslint no-undef: "error" -->
    100 
    101 ```javascript
    102 var randu = require( '@stdlib/random/base/randu' );
    103 var increwmean = require( '@stdlib/stats/incr/ewmean' );
    104 
    105 var accumulator;
    106 var v;
    107 var i;
    108 
    109 // Initialize an accumulator:
    110 accumulator = increwmean( 0.5 );
    111 
    112 // For each simulated datum, update the exponentially weighted mean...
    113 for ( i = 0; i < 100; i++ ) {
    114     v = randu() * 100.0;
    115     accumulator( v );
    116 }
    117 console.log( accumulator() );
    118 ```
    119 
    120 </section>
    121 
    122 <!-- /.examples -->
    123 
    124 <section class="links">
    125 
    126 [moving-average]: https://en.wikipedia.org/wiki/Moving_average
    127 
    128 </section>
    129 
    130 <!-- /.links -->