main.js (4252B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2018 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var isNumber = require( '@stdlib/assert/is-number' ).isPrimitive; 24 var isnan = require( '@stdlib/math/base/assert/is-nan' ); 25 var sqrt = require( '@stdlib/math/base/special/sqrt' ); 26 27 28 // MAIN // 29 30 /** 31 * Returns an accumulator function which incrementally computes the coefficient of variation (CV). 32 * 33 * ## Method 34 * 35 * - This implementation uses [Welford's method][algorithms-variance] for efficient computation, which can be derived as follows. Let 36 * 37 * ```tex 38 * \begin{align*} 39 * S_n &= n \sigma_n^2 \\ 40 * &= \sum_{i=1}^{n} (x_i - \mu_n)^2 \\ 41 * &= \biggl(\sum_{i=1}^{n} x_i^2 \biggr) - n\mu_n^2 42 * \end{align*} 43 * ``` 44 * 45 * Accordingly, 46 * 47 * ```tex 48 * \begin{align*} 49 * S_n - S_{n-1} &= \sum_{i=1}^{n} x_i^2 - n\mu_n^2 - \sum_{i=1}^{n-1} x_i^2 + (n-1)\mu_{n-1}^2 \\ 50 * &= x_n^2 - n\mu_n^2 + (n-1)\mu_{n-1}^2 \\ 51 * &= x_n^2 - \mu_{n-1}^2 + n(\mu_{n-1}^2 - \mu_n^2) \\ 52 * &= x_n^2 - \mu_{n-1}^2 + n(\mu_{n-1} - \mu_n)(\mu_{n-1} + \mu_n) \\ 53 * &= x_n^2 - \mu_{n-1}^2 + (\mu_{n-1} - x_n)(\mu_{n-1} + \mu_n) \\ 54 * &= x_n^2 - \mu_{n-1}^2 + \mu_{n-1}^2 - x_n\mu_n - x_n\mu_{n-1} + \mu_n\mu_{n-1} \\ 55 * &= x_n^2 - x_n\mu_n - x_n\mu_{n-1} + \mu_n\mu_{n-1} \\ 56 * &= (x_n - \mu_{n-1})(x_n - \mu_n) \\ 57 * &= S_{n-1} + (x_n - \mu_{n-1})(x_n - \mu_n) 58 * \end{align*} 59 * ``` 60 * 61 * where we use the identity 62 * 63 * ```tex 64 * x_n - \mu_{n-1} = n (\mu_n - \mu_{n-1}) 65 * ``` 66 * 67 * [algorithms-variance]: https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance 68 * 69 * @param {number} [mean] - mean value 70 * @throws {TypeError} must provide a number primitive 71 * @returns {Function} accumulator function 72 * 73 * @example 74 * var accumulator = incrcv(); 75 * 76 * var cv = accumulator(); 77 * // returns null 78 * 79 * cv = accumulator( 2.0 ); 80 * // returns 0.0 81 * 82 * cv = accumulator( 1.0 ); 83 * // returns ~0.47 84 * 85 * cv = accumulator(); 86 * // returns ~0.47 87 * 88 * @example 89 * var accumulator = incrcv( 3.14 ); 90 */ 91 function incrcv( mean ) { 92 var delta; 93 var mu; 94 var M2; 95 var N; 96 97 M2 = 0.0; 98 N = 0; 99 if ( arguments.length ) { 100 if ( !isNumber( mean ) ) { 101 throw new TypeError( 'invalid argument. Must provide a number primitive. Value: `' + mean + '`.' ); 102 } 103 mu = mean; 104 return accumulator2; 105 } 106 mu = 0.0; 107 return accumulator1; 108 109 /** 110 * If provided a value, the accumulator function returns an updated accumulated value. If not provided a value, the accumulator function returns the current accumulated value. 111 * 112 * @private 113 * @param {number} [x] - new value 114 * @returns {(number|null)} accumulated value or null 115 */ 116 function accumulator1( x ) { 117 if ( arguments.length === 0 ) { 118 if ( N === 0 ) { 119 return null; 120 } 121 if ( N === 1 ) { 122 return ( isnan( M2 ) ) ? NaN : 0.0/mu; 123 } 124 return sqrt( M2/(N-1) ) / mu; 125 } 126 N += 1; 127 delta = x - mu; 128 mu += delta / N; 129 M2 += delta * ( x - mu ); 130 if ( N < 2 ) { 131 return ( isnan( M2 ) ) ? NaN : 0.0/mu; 132 } 133 return sqrt( M2/(N-1) ) / mu; 134 } 135 136 /** 137 * If provided a value, the accumulator function returns an updated accumulated value. If not provided a value, the accumulator function returns the current accumulated value. 138 * 139 * @private 140 * @param {number} [x] - new value 141 * @returns {(number|null)} accumulated value or null 142 */ 143 function accumulator2( x ) { 144 if ( arguments.length === 0 ) { 145 if ( N === 0 ) { 146 return null; 147 } 148 return sqrt( M2/N ) / mu; 149 } 150 N += 1; 151 delta = x - mu; 152 M2 += delta * delta; 153 return sqrt( M2/N ) / mu; 154 } 155 } 156 157 158 // EXPORTS // 159 160 module.exports = incrcv;