time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (5467B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2018 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # incrcv
     22 
     23 > Compute the [coefficient of variation][coefficient-of-variation] (CV) incrementally.
     24 
     25 <section class="intro">
     26 
     27 The [corrected sample standard deviation][sample-stdev] is defined as
     28 
     29 <!-- <equation class="equation" label="eq:corrected_sample_standard_deviation" align="center" raw="s = \sqrt{\frac{1}{n-1} \sum_{i=0}^{n-1} ( x_i - \bar{x} )^2}" alt="Equation for the corrected sample standard deviation."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="s = \sqrt{\frac{1}{n-1} \sum_{i=0}^{n-1} ( x_i - \bar{x} )^2}" data-equation="eq:corrected_sample_standard_deviation">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@6dd7df93fd2c6e40fd0662844acf8b69b887dcec/lib/node_modules/@stdlib/stats/incr/cv/docs/img/equation_corrected_sample_standard_deviation.svg" alt="Equation for the corrected sample standard deviation.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 and the [arithmetic mean][arithmetic-mean] is defined as
     39 
     40 <!-- <equation class="equation" label="eq:arithmetic_mean" align="center" raw="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" alt="Equation for the arithmetic mean."> -->
     41 
     42 <div class="equation" align="center" data-raw-text="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" data-equation="eq:arithmetic_mean">
     43     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@6dd7df93fd2c6e40fd0662844acf8b69b887dcec/lib/node_modules/@stdlib/stats/incr/cv/docs/img/equation_arithmetic_mean.svg" alt="Equation for the arithmetic mean.">
     44     <br>
     45 </div>
     46 
     47 <!-- </equation> -->
     48 
     49 The [coefficient of variation][coefficient-of-variation] (also known as **relative standard deviation**, RSD) is defined as
     50 
     51 <!-- <equation class="equation" label="eq:coefficient_of_variation" align="center" raw="c_v = \frac{s}{\bar{x}}" alt="Equation for the coefficient of variation (CV)."> -->
     52 
     53 <div class="equation" align="center" data-raw-text="c_v = \frac{s}{\bar{x}}" data-equation="eq:coefficient_of_variation">
     54     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@6dd7df93fd2c6e40fd0662844acf8b69b887dcec/lib/node_modules/@stdlib/stats/incr/cv/docs/img/equation_coefficient_of_variation.svg" alt="Equation for the coefficient of variation (CV).">
     55     <br>
     56 </div>
     57 
     58 <!-- </equation> -->
     59 
     60 </section>
     61 
     62 <!-- /.intro -->
     63 
     64 <section class="usage">
     65 
     66 ## Usage
     67 
     68 ```javascript
     69 var incrcv = require( '@stdlib/stats/incr/cv' );
     70 ```
     71 
     72 #### incrcv( \[mean] )
     73 
     74 Returns an accumulator `function` which incrementally computes the [coefficient of variation][coefficient-of-variation].
     75 
     76 ```javascript
     77 var accumulator = incrcv();
     78 ```
     79 
     80 If the mean is already known, provide a `mean` argument.
     81 
     82 ```javascript
     83 var accumulator = incrcv( 3.0 );
     84 ```
     85 
     86 #### accumulator( \[x] )
     87 
     88 If provided an input value `x`, the accumulator function returns an updated accumulated value. If not provided an input value `x`, the accumulator function returns the current accumulated value.
     89 
     90 ```javascript
     91 var accumulator = incrcv();
     92 
     93 var cv = accumulator( 2.0 );
     94 // returns 0.0
     95 
     96 cv = accumulator( 1.0 ); // => s^2 = ((2-1.5)^2+(1-1.5)^2) / (2-1)
     97 // returns ~0.47
     98 
     99 cv = accumulator( 3.0 ); // => s^2 = ((2-2)^2+(1-2)^2+(3-2)^2) / (3-1)
    100 // returns 0.5
    101 
    102 cv = accumulator();
    103 // returns 0.5
    104 ```
    105 
    106 </section>
    107 
    108 <!-- /.usage -->
    109 
    110 <section class="notes">
    111 
    112 ## Notes
    113 
    114 -   Input values are **not** type checked. If provided `NaN` or a value which, when used in computations, results in `NaN`, the accumulated value is `NaN` for **all** future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly **before** passing the value to the accumulator function.
    115 -   The [coefficient of variation][coefficient-of-variation] is typically computed on nonnegative values. The measure may lack meaning for data which can assume both positive and negative values.
    116 -   For small and moderately sized samples, the accumulated value tends to be too low and is thus a **biased** estimator. Provided the generating distribution is known (e.g., a normal distribution), you may want to adjust the accumulated value or use an alternative implementation providing an unbiased estimator.
    117 
    118 </section>
    119 
    120 <!-- /.notes -->
    121 
    122 <section class="examples">
    123 
    124 ## Examples
    125 
    126 <!-- eslint no-undef: "error" -->
    127 
    128 ```javascript
    129 var randu = require( '@stdlib/random/base/randu' );
    130 var incrcv = require( '@stdlib/stats/incr/cv' );
    131 
    132 var accumulator;
    133 var v;
    134 var i;
    135 
    136 // Initialize an accumulator:
    137 accumulator = incrcv();
    138 
    139 // For each simulated datum, update the coefficient of variation...
    140 for ( i = 0; i < 100; i++ ) {
    141     v = randu() * 100.0;
    142     accumulator( v );
    143 }
    144 console.log( accumulator() );
    145 ```
    146 
    147 </section>
    148 
    149 <!-- /.examples -->
    150 
    151 <section class="links">
    152 
    153 [coefficient-of-variation]: https://en.wikipedia.org/wiki/Coefficient_of_variation
    154 
    155 [arithmetic-mean]: https://en.wikipedia.org/wiki/Arithmetic_mean
    156 
    157 [sample-stdev]: https://en.wikipedia.org/wiki/Standard_deviation
    158 
    159 </section>
    160 
    161 <!-- /.links -->