time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

main.js (10375B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2018 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var isPositiveInteger = require( '@stdlib/assert/is-positive-integer' ).isPrimitive;
     24 var isSquareMatrix = require( '@stdlib/assert/is-square-matrix' );
     25 var isVectorLike = require( '@stdlib/assert/is-vector-like' );
     26 var Float64Array = require( '@stdlib/array/float64' );
     27 var ctor = require( '@stdlib/ndarray/ctor' );
     28 var bctor = require( '@stdlib/ndarray/base/ctor' );
     29 var numel = require( '@stdlib/ndarray/base/numel' );
     30 
     31 
     32 // FUNCTIONS //
     33 
     34 /**
     35 * Returns a matrix.
     36 *
     37 * @private
     38 * @param {PositiveInteger} n - matrix order
     39 * @param {boolean} bool - boolean indicating whether to create a low-level ndarray
     40 * @returns {ndarray} matrix
     41 */
     42 function createMatrix( n, bool ) {
     43 	var strides;
     44 	var buffer;
     45 	var shape;
     46 	var f;
     47 
     48 	if ( bool ) {
     49 		f = bctor;
     50 	} else {
     51 		f = ctor;
     52 	}
     53 	buffer = new Float64Array( n*n );
     54 	shape = [ n, n ];
     55 	strides = [ n, 1 ];
     56 	return f( 'float64', buffer, shape, strides, 0, 'row-major' );
     57 }
     58 
     59 /**
     60 * Returns a vector.
     61 *
     62 * @private
     63 * @param {PositiveInteger} N - number of elements
     64 * @returns {ndarray} vector
     65 */
     66 function createVector( N ) {
     67 	var strides;
     68 	var buffer;
     69 	var shape;
     70 
     71 	buffer = new Float64Array( N );
     72 	shape = [ N ];
     73 	strides = [ 1 ];
     74 
     75 	return bctor( 'float64', buffer, shape, strides, 0, 'row-major' );
     76 }
     77 
     78 
     79 // MAIN //
     80 
     81 /**
     82 * Returns an accumulator function which incrementally computes an unbiased sample covariance matrix.
     83 *
     84 * ## Method
     85 *
     86 * -   For each unbiased sample covariance, we begin by defining the co-moment \\(C_{jn}\\)
     87 *
     88 *     ```tex
     89 *     C_n = \sum_{i=1}^{n} ( x_i - \bar{x}_n ) ( y_i - \bar{y}_n )
     90 *     ```
     91 *
     92 *     where \\(\bar{x}_n\\) and \\(\bar{y}_n\\) are the sample means for \\(x\\) and \\(y\\), respectively.
     93 *
     94 * -   Based on Welford's method, we know the update formulas for the sample means are given by
     95 *
     96 *     ```tex
     97 *     \bar{x}_n = \bar{x}_{n-1} + \frac{x_n - \bar{x}_{n-1}}{n}
     98 *     ```
     99 *
    100 *     and
    101 *
    102 *     ```tex
    103 *     \bar{y}_n = \bar{y}_{n-1} + \frac{y_n - \bar{y}_{n-1}}{n}
    104 *     ```
    105 *
    106 * -   Substituting into the equation for \\(C_n\\) and rearranging terms
    107 *
    108 *     ```tex
    109 *     C_n = C_{n-1} + (x_n - \bar{x}_n) (y_n - \bar{y}_{n-1})
    110 *     ```
    111 *
    112 *     where the apparent asymmetry arises from
    113 *
    114 *     ```tex
    115 *     x_n - \bar{x}_n = \frac{n-1}{n} (x_n - \bar{x}_{n-1})
    116 *     ```
    117 *
    118 *     and, hence, the update term can be equivalently expressed
    119 *
    120 *     ```tex
    121 *     \frac{n-1}{n} (x_n - \bar{x}_{n-1}) (y_n - \bar{y}_{n-1})
    122 *     ```
    123 *
    124 * -   The covariance can be defined
    125 *
    126 *     ```tex
    127 *     \begin{align*}
    128 *     \operatorname{cov}_n(x,y) &= \frac{C_n}{n} \\
    129 *     &= \frac{C_{n-1} + \frac{n-1}{n} (x_n - \bar{x}_{n-1}) (y_n - \bar{y}_{n-1})}{n} \\
    130 *     &= \frac{(n-1)\operatorname{cov}_{n-1}(x,y) + \frac{n-1}{n} (x_n - \bar{x}_{n-1}) (y_n - \bar{y}_{n-1})}{n}
    131 *     \end{align*}
    132 *     ```
    133 *
    134 * -   Applying Bessel's correction, we arrive at an update formula for calculating an unbiased sample covariance
    135 *
    136 *     ```tex
    137 *     \begin{align*}
    138 *     \operatorname{cov}_n(x,y) &= \frac{n}{n-1}\cdot\frac{(n-1)\operatorname{cov}_{n-1}(x,y) + \frac{n-1}{n} (x_n - \bar{x}_{n-1}) (y_n - \bar{y}_{n-1})}{n} \\
    139 *     &= \operatorname{cov}_{n-1}(x,y) + \frac{(x_n - \bar{x}_{n-1}) (y_n - \bar{y}_{n-1})}{n} \\
    140 *     &= \frac{C_{n-1}}{n-1} + \frac{(x_n - \bar{x}_{n-1}) (y_n - \bar{y}_{n-1})}{n}
    141 *     &= \frac{C_{n-1} + \frac{n-1}{n} (x_n - \bar{x}_{n-1}) (y_n - \bar{y}_{n-1})}{n-1}
    142 *     \end{align*}
    143 *     ```
    144 *
    145 * @param {(PositiveInteger|ndarray)} out - order of the covariance matrix or a square 2-dimensional output ndarray for storing the covariance matrix
    146 * @param {ndarray} [means] - mean values
    147 * @throws {TypeError} first argument must be either a positive integer or a 2-dimensional ndarray having equal dimensions
    148 * @throws {TypeError} second argument must be a 1-dimensional ndarray
    149 * @throws {Error} number of means must match covariance matrix dimensions
    150 * @returns {Function} accumulator function
    151 *
    152 * @example
    153 * var Float64Array = require( '@stdlib/array/float64' );
    154 * var ndarray = require( '@stdlib/ndarray/ctor' );
    155 *
    156 * // Create an output covariance matrix:
    157 * var buffer = new Float64Array( 4 );
    158 * var shape = [ 2, 2 ];
    159 * var strides = [ 2, 1 ];
    160 * var offset = 0;
    161 * var order = 'row-major';
    162 *
    163 * var cov = ndarray( 'float64', buffer, shape, strides, offset, order );
    164 *
    165 * // Create a covariance matrix accumulator:
    166 * var accumulator = incrcovmat( cov );
    167 *
    168 * var out = accumulator();
    169 * // returns null
    170 *
    171 * // Create a data vector:
    172 * buffer = new Float64Array( 2 );
    173 * shape = [ 2 ];
    174 * strides = [ 1 ];
    175 *
    176 * var vec = ndarray( 'float64', buffer, shape, strides, offset, order );
    177 *
    178 * // Provide data to the accumulator:
    179 * vec.set( 0, 2.0 );
    180 * vec.set( 1, 1.0 );
    181 *
    182 * out = accumulator( vec );
    183 * // returns <ndarray>
    184 *
    185 * var bool = ( out === cov );
    186 * // returns true
    187 *
    188 * vec.set( 0, -5.0 );
    189 * vec.set( 1, 3.14 );
    190 *
    191 * out = accumulator( vec );
    192 * // returns <ndarray>
    193 *
    194 * // Retrieve the covariance matrix:
    195 * out = accumulator();
    196 * // returns <ndarray>
    197 */
    198 function incrcovmat( out, means ) {
    199 	var order;
    200 	var cov;
    201 	var mu;
    202 	var C;
    203 	var d;
    204 	var N;
    205 
    206 	N = 0;
    207 	if ( isPositiveInteger( out ) ) {
    208 		order = out;
    209 		cov = createMatrix( order, false );
    210 	} else if ( isSquareMatrix( out ) ) {
    211 		order = out.shape[ 0 ];
    212 		cov = out;
    213 	} else {
    214 		throw new TypeError( 'invalid argument. First argument must either specify the order of the covariance matrix or be a square 2-dimensional ndarray for storing the covariance matrix. Value: `' + out + '`.' );
    215 	}
    216 	// Create a scratch array for storing residuals (i.e., `x_i - xbar_{i-1}`):
    217 	d = new Float64Array( order );
    218 
    219 	// Create a low-level scratch matrix for storing co-moments:
    220 	C = createMatrix( order, true );
    221 
    222 	if ( arguments.length > 1 ) {
    223 		if ( !isVectorLike( means ) ) {
    224 			throw new TypeError( 'invalid argument. Second argument must be a 1-dimensional ndarray. Value: `' + means + '`.' );
    225 		}
    226 		if ( numel( means.shape ) !== order ) {
    227 			throw new Error( 'invalid argument. The number of elements (means) in the second argument must match covariance matrix dimensions. Expected: '+order+'. Actual: '+numel( means.shape )+'.' );
    228 		}
    229 		mu = means; // TODO: should we copy this? Otherwise, internal state could be "corrupted" due to mutation outside the accumulator
    230 		return accumulator2;
    231 	}
    232 	// Create an ndarray vector for storing sample means (note: an ndarray interface is not necessary, but it reduces implementation complexity by ensuring a consistent abstraction for accessing and updating sample means):
    233 	mu = createVector( order );
    234 
    235 	return accumulator1;
    236 
    237 	/**
    238 	* If provided a data vector, the accumulator function returns an updated unbiased sample covariance matrix. If not provided a data vector, the accumulator function returns the current unbiased sample covariance matrix.
    239 	*
    240 	* @private
    241 	* @param {ndarray} [v] - data vector
    242 	* @throws {TypeError} must provide a 1-dimensional ndarray
    243 	* @throws {Error} vector length must match covariance matrix dimensions
    244 	* @returns {(ndarray|null)} unbiased sample covariance matrix or null
    245 	*/
    246 	function accumulator1( v ) {
    247 		var covij;
    248 		var denom;
    249 		var rdx;
    250 		var cij;
    251 		var m;
    252 		var n;
    253 		var r;
    254 		var i;
    255 		var j;
    256 		if ( arguments.length === 0 ) {
    257 			if ( N === 0 ) {
    258 				return null;
    259 			}
    260 			return cov;
    261 		}
    262 		if ( !isVectorLike( v ) ) {
    263 			throw new TypeError( 'invalid argument. Must provide a 1-dimensional ndarray. Value: `' + v + '`.' );
    264 		}
    265 		if ( v.shape[ 0 ] !== order ) {
    266 			throw new Error( 'invalid argument. Vector length must match covariance matrix dimensions. Expected: '+order+'. Actual: '+v.shape[ 0 ]+'.' );
    267 		}
    268 		n = N;
    269 		N += 1;
    270 		r = n / N;
    271 
    272 		denom = n || 1; // Bessel's correction (avoiding divide-by-zero below)
    273 
    274 		for ( i = 0; i < order; i++ ) {
    275 			m = mu.get( i );
    276 
    277 			// Compute the residual:
    278 			d[ i ] = v.get( i ) - m;
    279 
    280 			// Update the sample mean:
    281 			m += d[ i ] / N;
    282 			mu.set( i, m );
    283 
    284 			// Update the co-moments and covariance matrix, recognizing that the covariance matrix is symmetric...
    285 			rdx = r * d[ i ]; // if `n=0`, `r=0.0`
    286 			for ( j = 0; j <= i; j++ ) {
    287 				cij = C.get( i, j ) + ( rdx*d[j] );
    288 				C.set( i, j, cij );
    289 				C.set( j, i, cij ); // via symmetry
    290 
    291 				covij = cij / denom;
    292 				cov.set( i, j, covij );
    293 				cov.set( j, i, covij ); // via symmetry
    294 			}
    295 		}
    296 		return cov;
    297 	}
    298 
    299 	/**
    300 	* If provided a data vector, the accumulator function returns an updated unbiased sample covariance matrix. If not provided a data vector, the accumulator function returns the current unbiased sample covariance matrix.
    301 	*
    302 	* @private
    303 	* @param {ndarray} [v] - data vector
    304 	* @throws {TypeError} must provide a 1-dimensional ndarray
    305 	* @throws {Error} vector length must match covariance matrix dimensions
    306 	* @returns {(ndarray|null)} unbiased sample covariance matrix or null
    307 	*/
    308 	function accumulator2( v ) {
    309 		var covij;
    310 		var cij;
    311 		var di;
    312 		var i;
    313 		var j;
    314 		if ( arguments.length === 0 ) {
    315 			if ( N === 0 ) {
    316 				return null;
    317 			}
    318 			return cov;
    319 		}
    320 		if ( !isVectorLike( v ) ) {
    321 			throw new TypeError( 'invalid argument. Must provide a 1-dimensional ndarray. Value: `' + v + '`.' );
    322 		}
    323 		if ( v.shape[ 0 ] !== order ) {
    324 			throw new Error( 'invalid argument. Vector length must match covariance matrix dimensions. Expected: '+order+'. Actual: '+v.shape[ 0 ]+'.' );
    325 		}
    326 		N += 1;
    327 		for ( i = 0; i < order; i++ ) {
    328 			// Compute the residual:
    329 			d[ i ] = v.get( i ) - mu.get( i );
    330 
    331 			// Update the co-moments and covariance matrix, recognizing that the covariance matrix is symmetric...
    332 			di = d[ i ];
    333 			for ( j = 0; j <= i; j++ ) {
    334 				cij = C.get( i, j ) + ( di*d[j] );
    335 				C.set( i, j, cij );
    336 				C.set( j, i, cij ); // via symmetry
    337 
    338 				covij = cij / N;
    339 				cov.set( i, j, covij );
    340 				cov.set( j, i, covij ); // via symmetry
    341 			}
    342 		}
    343 		return cov;
    344 	}
    345 }
    346 
    347 
    348 // EXPORTS //
    349 
    350 module.exports = incrcovmat;