time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (5402B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2018 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # incrapcorr
     22 
     23 > Compute a sample absolute [Pearson product-moment correlation coefficient][pearson-correlation] incrementally.
     24 
     25 <section class="intro">
     26 
     27 The [Pearson product-moment correlation coefficient][pearson-correlation] between random variables `X` and `Y` is defined as
     28 
     29 <!-- <equation class="equation" label="eq:pearson_correlation_coefficient" align="center" raw="\rho_{X,Y} = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y}" alt="Equation for the Pearson product-moment correlation coefficient."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="\rho_{X,Y} = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y}" data-equation="eq:pearson_correlation_coefficient">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@80f96253bf726f33bc71d8eb68037ab203ae4cf9/lib/node_modules/@stdlib/stats/incr/apcorr/docs/img/equation_pearson_correlation_coefficient.svg" alt="Equation for the Pearson product-moment correlation coefficient.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 where the numerator is the [covariance][covariance] and the denominator is the product of the respective standard deviations.
     39 
     40 For a sample of size `n`, the sample [Pearson product-moment correlation coefficient][pearson-correlation] is defined as
     41 
     42 <!-- <equation class="equation" label="eq:sample_pearson_correlation_coefficient" align="center" raw="r = \frac{\sum_{i=0}^{n-1} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=0}^{n-1} (x_i - \bar{x})^2} \sqrt{\sum_{i=0}^{n-1} (y_i - \bar{y})^2}}" alt="Equation for the sample Pearson product-moment correlation coefficient."> -->
     43 
     44 <div class="equation" align="center" data-raw-text="r = \frac{\sum_{i=0}^{n-1} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=0}^{n-1} (x_i - \bar{x})^2} \sqrt{\sum_{i=0}^{n-1} (y_i - \bar{y})^2}}" data-equation="eq:sample_pearson_correlation_coefficient">
     45     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@80f96253bf726f33bc71d8eb68037ab203ae4cf9/lib/node_modules/@stdlib/stats/incr/apcorr/docs/img/equation_sample_pearson_correlation_coefficient.svg" alt="Equation for the sample Pearson product-moment correlation coefficient.">
     46     <br>
     47 </div>
     48 
     49 <!-- </equation> -->
     50 
     51 The sample **absolute** [Pearson product-moment correlation coefficient][pearson-correlation] is thus defined as the absolute value of the sample [Pearson product-moment correlation coefficient][pearson-correlation].
     52 
     53 </section>
     54 
     55 <!-- /.intro -->
     56 
     57 <section class="usage">
     58 
     59 ## Usage
     60 
     61 ```javascript
     62 var incrapcorr = require( '@stdlib/stats/incr/apcorr' );
     63 ```
     64 
     65 #### incrapcorr( \[mx, my] )
     66 
     67 Returns an accumulator `function` which incrementally computes a sample absolute [Pearson product-moment correlation coefficient][pearson-correlation].
     68 
     69 ```javascript
     70 var accumulator = incrapcorr();
     71 ```
     72 
     73 If the means are already known, provide `mx` and `my` arguments.
     74 
     75 ```javascript
     76 var accumulator = incrapcorr( 3.0, -5.5 );
     77 ```
     78 
     79 #### accumulator( \[x, y] )
     80 
     81 If provided input value `x` and `y`, the accumulator function returns an updated accumulated value. If not provided input values `x` and `y`, the accumulator function returns the current accumulated value.
     82 
     83 ```javascript
     84 var accumulator = incrapcorr();
     85 
     86 var v = accumulator( 2.0, 1.0 );
     87 // returns 0.0
     88 
     89 v = accumulator( 1.0, -5.0 );
     90 // returns 1.0
     91 
     92 v = accumulator( 3.0, 3.14 );
     93 // returns ~0.965
     94 
     95 v = accumulator();
     96 // returns ~0.965
     97 ```
     98 
     99 </section>
    100 
    101 <!-- /.usage -->
    102 
    103 <section class="notes">
    104 
    105 ## Notes
    106 
    107 -   Input values are **not** type checked. If provided `NaN` or a value which, when used in computations, results in `NaN`, the accumulated value is `NaN` for **all** future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly **before** passing the value to the accumulator function.
    108 -   In comparison to the sample [Pearson product-moment correlation coefficient][pearson-correlation], the sample absolute [Pearson product-moment correlation coefficient][pearson-correlation] is useful when only concerned with the strength of the correlation and not the direction.
    109 
    110 </section>
    111 
    112 <!-- /.notes -->
    113 
    114 <section class="examples">
    115 
    116 ## Examples
    117 
    118 <!-- eslint no-undef: "error" -->
    119 
    120 ```javascript
    121 var randu = require( '@stdlib/random/base/randu' );
    122 var incrapcorr = require( '@stdlib/stats/incr/apcorr' );
    123 
    124 var accumulator;
    125 var x;
    126 var y;
    127 var i;
    128 
    129 // Initialize an accumulator:
    130 accumulator = incrapcorr();
    131 
    132 // For each simulated datum, update the sample absolute correlation coefficient...
    133 for ( i = 0; i < 100; i++ ) {
    134     x = randu() * 100.0;
    135     y = randu() * 100.0;
    136     accumulator( x, y );
    137 }
    138 console.log( accumulator() );
    139 ```
    140 
    141 </section>
    142 
    143 <!-- /.examples -->
    144 
    145 <section class="links">
    146 
    147 [pearson-correlation]: https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
    148 
    149 [covariance]: https://en.wikipedia.org/wiki/Covariance
    150 
    151 </section>
    152 
    153 <!-- /.links -->