time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

repl.txt (2029B)


      1 
      2 {{alias}}( x[, options] )
      3     Performs a chi-square independence test.
      4 
      5     For a two-way contingency table `x` (represented as a two-dimensional
      6     `ndarray` or `array` of `arrays`), the null hypothesis that the joint
      7     distribution of the cell counts is the product of the row and column
      8     marginals is tested, i.e. whether the row and column variables are
      9     independent.
     10 
     11     The function returns an object containing the test statistic, p-value, and
     12     decision.
     13 
     14     Parameters
     15     ----------
     16     x: (MatrixLike|Array<Array>)
     17         Two-way table of cell counts.
     18 
     19     options: Object (optional)
     20         Options.
     21 
     22     options.alpha: number (optional)
     23         Significance level of the hypothesis test. Must be on the interval
     24         [0,1]. Default: 0.05.
     25 
     26     options.correct: boolean (optional)
     27         Boolean indicating whether to use Yates' continuity correction when
     28         provided a 2x2 contingency table. Default: true.
     29 
     30     Returns
     31     -------
     32     out: Object
     33         Test result object.
     34 
     35     out.alpha: number
     36         Significance level.
     37 
     38     out.rejected: boolean
     39         Test decision.
     40 
     41     out.pValue: number
     42         Test p-value.
     43 
     44     out.statistic: number
     45         Test statistic.
     46 
     47     out.df: number
     48         Degrees of freedom.
     49 
     50     out.expected: ndarray
     51         Expected cell counts.
     52 
     53     out.method: string
     54         Test name.
     55 
     56     out.print: Function
     57         Function to print formatted output.
     58 
     59     Examples
     60     --------
     61     // Provide expected probabilities...
     62     > var x = [ [ 20, 30 ], [ 30, 20 ] ];
     63     > var out = {{alias}}( x )
     64     { 'rejected': false, 'pValue': ~0.072, 'statistic': 3.24, ... }
     65     > out.print()
     66 
     67     // Set significance level...
     68     > var opts = { 'alpha': 0.1 };
     69     > out = {{alias}}( x, opts )
     70     { 'rejected': true, 'pValue': ~0.072, 'statistic': 3.24, ... }
     71     > out.print()
     72 
     73     // Disable Yates' continuity correction (primarily used with small counts):
     74     > opts = { 'correct': false };
     75     > out = {{alias}}( x, opts )
     76     {...}
     77 
     78     See Also
     79     --------
     80