varianceyc.js (1995B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MAIN // 22 23 /** 24 * Computes the variance of a strided array using a one-pass algorithm proposed by Youngs and Cramer. 25 * 26 * ## Method 27 * 28 * - This implementation uses a one-pass algorithm, as proposed by Youngs and Cramer (1971). 29 * 30 * ## References 31 * 32 * - Youngs, Edward A., and Elliot M. Cramer. 1971. "Some Results Relevant to Choice of Sum and Sum-of-Product Algorithms." _Technometrics_ 13 (3): 657–65. doi:[10.1080/00401706.1971.10488826](https://doi.org/10.1080/00401706.1971.10488826). 33 * 34 * @param {PositiveInteger} N - number of indexed elements 35 * @param {number} correction - degrees of freedom adjustment 36 * @param {NumericArray} x - input array 37 * @param {integer} stride - stride length 38 * @returns {number} variance 39 * 40 * @example 41 * var x = [ 1.0, -2.0, 2.0 ]; 42 * 43 * var v = varianceyc( x.length, 1, x, 1 ); 44 * // returns ~4.3333 45 */ 46 function varianceyc( N, correction, x, stride ) { 47 var sum; 48 var ix; 49 var S; 50 var v; 51 var d; 52 var n; 53 var i; 54 55 n = N - correction; 56 if ( N <= 0 || n <= 0.0 ) { 57 return NaN; 58 } 59 if ( N === 1 || stride === 0 ) { 60 return 0.0; 61 } 62 if ( stride < 0 ) { 63 ix = (1-N) * stride; 64 } else { 65 ix = 0; 66 } 67 sum = x[ ix ]; 68 ix += stride; 69 S = 0.0; 70 for ( i = 2; i <= N; i++ ) { 71 v = x[ ix ]; 72 sum += v; 73 d = (i*v) - sum; 74 S += (1.0/(i*(i-1))) * d * d; 75 ix += stride; 76 } 77 return S / n; 78 } 79 80 81 // EXPORTS // 82 83 module.exports = varianceyc;