README.md (9303B)
1 <!-- 2 3 @license Apache-2.0 4 5 Copyright (c) 2020 The Stdlib Authors. 6 7 Licensed under the Apache License, Version 2.0 (the "License"); 8 you may not use this file except in compliance with the License. 9 You may obtain a copy of the License at 10 11 http://www.apache.org/licenses/LICENSE-2.0 12 13 Unless required by applicable law or agreed to in writing, software 14 distributed under the License is distributed on an "AS IS" BASIS, 15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 See the License for the specific language governing permissions and 17 limitations under the License. 18 19 --> 20 21 # variancewd 22 23 > Calculate the [variance][variance] of a strided array using Welford's algorithm. 24 25 <section class="intro"> 26 27 The population [variance][variance] of a finite size population of size `N` is given by 28 29 <!-- <equation class="equation" label="eq:population_variance" align="center" raw="\sigma^2 = \frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2" alt="Equation for the population variance."> --> 30 31 <div class="equation" align="center" data-raw-text="\sigma^2 = \frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2" data-equation="eq:population_variance"> 32 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@00dc7e1a49e6c42611726e55478a569d55020169/lib/node_modules/@stdlib/stats/base/variancewd/docs/img/equation_population_variance.svg" alt="Equation for the population variance."> 33 <br> 34 </div> 35 36 <!-- </equation> --> 37 38 where the population mean is given by 39 40 <!-- <equation class="equation" label="eq:population_mean" align="center" raw="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" alt="Equation for the population mean."> --> 41 42 <div class="equation" align="center" data-raw-text="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" data-equation="eq:population_mean"> 43 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@00dc7e1a49e6c42611726e55478a569d55020169/lib/node_modules/@stdlib/stats/base/variancewd/docs/img/equation_population_mean.svg" alt="Equation for the population mean."> 44 <br> 45 </div> 46 47 <!-- </equation> --> 48 49 Often in the analysis of data, the true population [variance][variance] is not known _a priori_ and must be estimated from a sample drawn from the population distribution. If one attempts to use the formula for the population [variance][variance], the result is biased and yields a **biased sample variance**. To compute an **unbiased sample variance** for a sample of size `n`, 50 51 <!-- <equation class="equation" label="eq:unbiased_sample_variance" align="center" raw="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2" alt="Equation for computing an unbiased sample variance."> --> 52 53 <div class="equation" align="center" data-raw-text="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2" data-equation="eq:unbiased_sample_variance"> 54 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@00dc7e1a49e6c42611726e55478a569d55020169/lib/node_modules/@stdlib/stats/base/variancewd/docs/img/equation_unbiased_sample_variance.svg" alt="Equation for computing an unbiased sample variance."> 55 <br> 56 </div> 57 58 <!-- </equation> --> 59 60 where the sample mean is given by 61 62 <!-- <equation class="equation" label="eq:sample_mean" align="center" raw="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" alt="Equation for the sample mean."> --> 63 64 <div class="equation" align="center" data-raw-text="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" data-equation="eq:sample_mean"> 65 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@00dc7e1a49e6c42611726e55478a569d55020169/lib/node_modules/@stdlib/stats/base/variancewd/docs/img/equation_sample_mean.svg" alt="Equation for the sample mean."> 66 <br> 67 </div> 68 69 <!-- </equation> --> 70 71 The use of the term `n-1` is commonly referred to as Bessel's correction. Note, however, that applying Bessel's correction can increase the mean squared error between the sample variance and population variance. Depending on the characteristics of the population distribution, other correction factors (e.g., `n-1.5`, `n+1`, etc) can yield better estimators. 72 73 </section> 74 75 <!-- /.intro --> 76 77 <section class="usage"> 78 79 ## Usage 80 81 ```javascript 82 var variancewd = require( '@stdlib/stats/base/variancewd' ); 83 ``` 84 85 #### variancewd( N, correction, x, stride ) 86 87 Computes the [variance][variance] of a strided array `x` using Welford's algorithm. 88 89 ```javascript 90 var x = [ 1.0, -2.0, 2.0 ]; 91 92 var v = variancewd( x.length, 1, x, 1 ); 93 // returns ~4.3333 94 ``` 95 96 The function has the following parameters: 97 98 - **N**: number of indexed elements. 99 - **correction**: degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [variance][variance] according to `N-c` where `c` corresponds to the provided degrees of freedom adjustment. When computing the [variance][variance] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the unbiased sample [variance][variance], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction). 100 - **x**: input [`Array`][mdn-array] or [`typed array`][mdn-typed-array]. 101 - **stride**: index increment for `x`. 102 103 The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [variance][variance] of every other element in `x`, 104 105 ```javascript 106 var floor = require( '@stdlib/math/base/special/floor' ); 107 108 var x = [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ]; 109 var N = floor( x.length / 2 ); 110 111 var v = variancewd( N, 1, x, 2 ); 112 // returns 6.25 113 ``` 114 115 Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views. 116 117 <!-- eslint-disable stdlib/capitalized-comments --> 118 119 ```javascript 120 var Float64Array = require( '@stdlib/array/float64' ); 121 var floor = require( '@stdlib/math/base/special/floor' ); 122 123 var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] ); 124 var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element 125 126 var N = floor( x0.length / 2 ); 127 128 var v = variancewd( N, 1, x1, 2 ); 129 // returns 6.25 130 ``` 131 132 #### variancewd.ndarray( N, correction, x, stride, offset ) 133 134 Computes the [variance][variance] of a strided array using Welford's algorithm and alternative indexing semantics. 135 136 ```javascript 137 var x = [ 1.0, -2.0, 2.0 ]; 138 139 var v = variancewd.ndarray( x.length, 1, x, 1, 0 ); 140 // returns ~4.33333 141 ``` 142 143 The function has the following additional parameters: 144 145 - **offset**: starting index for `x`. 146 147 While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [variance][variance] for every other value in `x` starting from the second value 148 149 ```javascript 150 var floor = require( '@stdlib/math/base/special/floor' ); 151 152 var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ]; 153 var N = floor( x.length / 2 ); 154 155 var v = variancewd.ndarray( N, 1, x, 2, 1 ); 156 // returns 6.25 157 ``` 158 159 </section> 160 161 <!-- /.usage --> 162 163 <section class="notes"> 164 165 ## Notes 166 167 - If `N <= 0`, both functions return `NaN`. 168 - If `N - c` is less than or equal to `0` (where `c` corresponds to the provided degrees of freedom adjustment), both functions return `NaN`. 169 - Depending on the environment, the typed versions ([`dvariancewd`][@stdlib/stats/base/dvariancewd], [`svariancewd`][@stdlib/stats/base/svariancewd], etc.) are likely to be significantly more performant. 170 171 </section> 172 173 <!-- /.notes --> 174 175 <section class="examples"> 176 177 ## Examples 178 179 <!-- eslint no-undef: "error" --> 180 181 ```javascript 182 var randu = require( '@stdlib/random/base/randu' ); 183 var round = require( '@stdlib/math/base/special/round' ); 184 var Float64Array = require( '@stdlib/array/float64' ); 185 var variancewd = require( '@stdlib/stats/base/variancewd' ); 186 187 var x; 188 var i; 189 190 x = new Float64Array( 10 ); 191 for ( i = 0; i < x.length; i++ ) { 192 x[ i ] = round( (randu()*100.0) - 50.0 ); 193 } 194 console.log( x ); 195 196 var v = variancewd( x.length, 1, x, 1 ); 197 console.log( v ); 198 ``` 199 200 </section> 201 202 <!-- /.examples --> 203 204 * * * 205 206 <section class="references"> 207 208 ## References 209 210 - Welford, B. P. 1962. "Note on a Method for Calculating Corrected Sums of Squares and Products." _Technometrics_ 4 (3). Taylor & Francis: 419–20. doi:[10.1080/00401706.1962.10490022][@welford:1962a]. 211 - van Reeken, A. J. 1968. "Letters to the Editor: Dealing with Neely's Algorithms." _Communications of the ACM_ 11 (3): 149–50. doi:[10.1145/362929.362961][@vanreeken:1968a]. 212 213 </section> 214 215 <!-- /.references --> 216 217 <section class="links"> 218 219 [variance]: https://en.wikipedia.org/wiki/Variance 220 221 [mdn-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array 222 223 [mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray 224 225 [@stdlib/stats/base/dvariancewd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dvariancewd 226 227 [@stdlib/stats/base/svariancewd]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/svariancewd 228 229 [@welford:1962a]: https://doi.org/10.1080/00401706.1962.10490022 230 231 [@vanreeken:1968a]: https://doi.org/10.1145/362929.362961 232 233 </section> 234 235 <!-- /.links -->