README.md (9511B)
1 <!-- 2 3 @license Apache-2.0 4 5 Copyright (c) 2020 The Stdlib Authors. 6 7 Licensed under the Apache License, Version 2.0 (the "License"); 8 you may not use this file except in compliance with the License. 9 You may obtain a copy of the License at 10 11 http://www.apache.org/licenses/LICENSE-2.0 12 13 Unless required by applicable law or agreed to in writing, software 14 distributed under the License is distributed on an "AS IS" BASIS, 15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 See the License for the specific language governing permissions and 17 limitations under the License. 18 19 --> 20 21 # variancepn 22 23 > Calculate the [variance][variance] of a strided array using a two-pass algorithm. 24 25 <section class="intro"> 26 27 The population [variance][variance] of a finite size population of size `N` is given by 28 29 <!-- <equation class="equation" label="eq:population_variance" align="center" raw="\sigma^2 = \frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2" alt="Equation for the population variance."> --> 30 31 <div class="equation" align="center" data-raw-text="\sigma^2 = \frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2" data-equation="eq:population_variance"> 32 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@b7aa38ad56dc6dc7e5327fce8074b1d9d61ebe11/lib/node_modules/@stdlib/stats/base/variancepn/docs/img/equation_population_variance.svg" alt="Equation for the population variance."> 33 <br> 34 </div> 35 36 <!-- </equation> --> 37 38 where the population mean is given by 39 40 <!-- <equation class="equation" label="eq:population_mean" align="center" raw="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" alt="Equation for the population mean."> --> 41 42 <div class="equation" align="center" data-raw-text="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" data-equation="eq:population_mean"> 43 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@b7aa38ad56dc6dc7e5327fce8074b1d9d61ebe11/lib/node_modules/@stdlib/stats/base/variancepn/docs/img/equation_population_mean.svg" alt="Equation for the population mean."> 44 <br> 45 </div> 46 47 <!-- </equation> --> 48 49 Often in the analysis of data, the true population [variance][variance] is not known _a priori_ and must be estimated from a sample drawn from the population distribution. If one attempts to use the formula for the population [variance][variance], the result is biased and yields a **biased sample variance**. To compute an **unbiased sample variance** for a sample of size `n`, 50 51 <!-- <equation class="equation" label="eq:unbiased_sample_variance" align="center" raw="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2" alt="Equation for computing an unbiased sample variance."> --> 52 53 <div class="equation" align="center" data-raw-text="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2" data-equation="eq:unbiased_sample_variance"> 54 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@b7aa38ad56dc6dc7e5327fce8074b1d9d61ebe11/lib/node_modules/@stdlib/stats/base/variancepn/docs/img/equation_unbiased_sample_variance.svg" alt="Equation for computing an unbiased sample variance."> 55 <br> 56 </div> 57 58 <!-- </equation> --> 59 60 where the sample mean is given by 61 62 <!-- <equation class="equation" label="eq:sample_mean" align="center" raw="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" alt="Equation for the sample mean."> --> 63 64 <div class="equation" align="center" data-raw-text="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" data-equation="eq:sample_mean"> 65 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@b7aa38ad56dc6dc7e5327fce8074b1d9d61ebe11/lib/node_modules/@stdlib/stats/base/variancepn/docs/img/equation_sample_mean.svg" alt="Equation for the sample mean."> 66 <br> 67 </div> 68 69 <!-- </equation> --> 70 71 The use of the term `n-1` is commonly referred to as Bessel's correction. Note, however, that applying Bessel's correction can increase the mean squared error between the sample variance and population variance. Depending on the characteristics of the population distribution, other correction factors (e.g., `n-1.5`, `n+1`, etc) can yield better estimators. 72 73 </section> 74 75 <!-- /.intro --> 76 77 <section class="usage"> 78 79 ## Usage 80 81 ```javascript 82 var variancepn = require( '@stdlib/stats/base/variancepn' ); 83 ``` 84 85 #### variancepn( N, correction, x, stride ) 86 87 Computes the [variance][variance] of a strided array `x` using a two-pass algorithm. 88 89 ```javascript 90 var x = [ 1.0, -2.0, 2.0 ]; 91 var N = x.length; 92 93 var v = variancepn( N, 1, x, 1 ); 94 // returns ~4.3333 95 ``` 96 97 The function has the following parameters: 98 99 - **N**: number of indexed elements. 100 - **correction**: degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [variance][variance] according to `N-c` where `c` corresponds to the provided degrees of freedom adjustment. When computing the [variance][variance] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the unbiased sample [variance][variance], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction). 101 - **x**: input [`Array`][mdn-array] or [`typed array`][mdn-typed-array]. 102 - **stride**: index increment for `x`. 103 104 The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [variance][variance] of every other element in `x`, 105 106 ```javascript 107 var floor = require( '@stdlib/math/base/special/floor' ); 108 109 var x = [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ]; 110 var N = floor( x.length / 2 ); 111 112 var v = variancepn( N, 1, x, 2 ); 113 // returns 6.25 114 ``` 115 116 Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views. 117 118 <!-- eslint-disable stdlib/capitalized-comments --> 119 120 ```javascript 121 var Float64Array = require( '@stdlib/array/float64' ); 122 var floor = require( '@stdlib/math/base/special/floor' ); 123 124 var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] ); 125 var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element 126 127 var N = floor( x0.length / 2 ); 128 129 var v = variancepn( N, 1, x1, 2 ); 130 // returns 6.25 131 ``` 132 133 #### variancepn.ndarray( N, correction, x, stride, offset ) 134 135 Computes the [variance][variance] of a strided array using a two-pass algorithm and alternative indexing semantics. 136 137 ```javascript 138 var x = [ 1.0, -2.0, 2.0 ]; 139 var N = x.length; 140 141 var v = variancepn.ndarray( N, 1, x, 1, 0 ); 142 // returns ~4.33333 143 ``` 144 145 The function has the following additional parameters: 146 147 - **offset**: starting index for `x`. 148 149 While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [variance][variance] for every other value in `x` starting from the second value 150 151 ```javascript 152 var floor = require( '@stdlib/math/base/special/floor' ); 153 154 var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ]; 155 var N = floor( x.length / 2 ); 156 157 var v = variancepn.ndarray( N, 1, x, 2, 1 ); 158 // returns 6.25 159 ``` 160 161 </section> 162 163 <!-- /.usage --> 164 165 <section class="notes"> 166 167 ## Notes 168 169 - If `N <= 0`, both functions return `NaN`. 170 - If `N - c` is less than or equal to `0` (where `c` corresponds to the provided degrees of freedom adjustment), both functions return `NaN`. 171 - Depending on the environment, the typed versions ([`dvariancepn`][@stdlib/stats/base/dvariancepn], [`svariancepn`][@stdlib/stats/base/svariancepn], etc.) are likely to be significantly more performant. 172 173 </section> 174 175 <!-- /.notes --> 176 177 <section class="examples"> 178 179 ## Examples 180 181 <!-- eslint no-undef: "error" --> 182 183 ```javascript 184 var randu = require( '@stdlib/random/base/randu' ); 185 var round = require( '@stdlib/math/base/special/round' ); 186 var Float64Array = require( '@stdlib/array/float64' ); 187 var variancepn = require( '@stdlib/stats/base/variancepn' ); 188 189 var x; 190 var i; 191 192 x = new Float64Array( 10 ); 193 for ( i = 0; i < x.length; i++ ) { 194 x[ i ] = round( (randu()*100.0) - 50.0 ); 195 } 196 console.log( x ); 197 198 var v = variancepn( x.length, 1, x, 1 ); 199 console.log( v ); 200 ``` 201 202 </section> 203 204 <!-- /.examples --> 205 206 * * * 207 208 <section class="references"> 209 210 ## References 211 212 - Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958][@neely:1966a]. 213 - Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036][@schubert:2018a]. 214 215 </section> 216 217 <!-- /.references --> 218 219 <section class="links"> 220 221 [variance]: https://en.wikipedia.org/wiki/Variance 222 223 [mdn-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array 224 225 [mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray 226 227 [@stdlib/stats/base/dvariancepn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dvariancepn 228 229 [@stdlib/stats/base/svariancepn]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/svariancepn 230 231 [@neely:1966a]: https://doi.org/10.1145/365719.365958 232 233 [@schubert:2018a]: https://doi.org/10.1145/3221269.3223036 234 235 </section> 236 237 <!-- /.links -->