variancech.js (3057B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MAIN // 22 23 /** 24 * Computes the variance of a strided array using a one-pass trial mean algorithm. 25 * 26 * ## Method 27 * 28 * - This implementation uses a one-pass trial mean approach, as suggested by Chan et al (1983). 29 * 30 * ## References 31 * 32 * - Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958). 33 * - Ling, Robert F. 1974. "Comparison of Several Algorithms for Computing Sample Means and Variances." _Journal of the American Statistical Association_ 69 (348). American Statistical Association, Taylor & Francis, Ltd.: 859–66. doi:[10.2307/2286154](https://doi.org/10.2307/2286154). 34 * - Chan, Tony F., Gene H. Golub, and Randall J. LeVeque. 1983. "Algorithms for Computing the Sample Variance: Analysis and Recommendations." _The American Statistician_ 37 (3). American Statistical Association, Taylor & Francis, Ltd.: 242–47. doi:[10.1080/00031305.1983.10483115](https://doi.org/10.1080/00031305.1983.10483115). 35 * - Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036). 36 * 37 * @param {PositiveInteger} N - number of indexed elements 38 * @param {number} correction - degrees of freedom adjustment 39 * @param {NumericArray} x - input array 40 * @param {integer} stride - stride length 41 * @returns {number} variance 42 * 43 * @example 44 * var x = [ 1.0, -2.0, 2.0 ]; 45 * var N = x.length; 46 * 47 * var v = variancech( N, 1, x, 1 ); 48 * // returns ~4.3333 49 */ 50 function variancech( N, correction, x, stride ) { 51 var mu; 52 var ix; 53 var M2; 54 var M; 55 var d; 56 var n; 57 var i; 58 59 n = N - correction; 60 if ( N <= 0 || n <= 0.0 ) { 61 return NaN; 62 } 63 if ( N === 1 || stride === 0 ) { 64 return 0.0; 65 } 66 if ( stride < 0 ) { 67 ix = (1-N) * stride; 68 } else { 69 ix = 0; 70 } 71 // Use an estimate for the mean: 72 mu = x[ ix ]; 73 ix += stride; 74 75 // Compute the variance... 76 M2 = 0.0; 77 M = 0.0; 78 for ( i = 1; i < N; i++ ) { 79 d = x[ ix ] - mu; 80 M2 += d * d; 81 M += d; 82 ix += stride; 83 } 84 return (M2/n) - ((M/N)*(M/n)); 85 } 86 87 88 // EXPORTS // 89 90 module.exports = variancech;