time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

repl.txt (3845B)


      1 
      2 {{alias}}( N, correction, x, stride )
      3     Computes the variance of a strided array using a one-pass trial mean
      4     algorithm.
      5 
      6     The `N` and `stride` parameters determine which elements in `x` are accessed
      7     at runtime.
      8 
      9     Indexing is relative to the first index. To introduce an offset, use a typed
     10     array view.
     11 
     12     If `N <= 0`, the function returns `NaN`.
     13 
     14     Parameters
     15     ----------
     16     N: integer
     17         Number of indexed elements.
     18 
     19     correction: number
     20         Degrees of freedom adjustment. Setting this parameter to a value other
     21         than `0` has the effect of adjusting the divisor during the calculation
     22         of the variance according to `N - c` where `c` corresponds to the
     23         provided degrees of freedom adjustment. When computing the variance of a
     24         population, setting this parameter to `0` is the standard choice (i.e.,
     25         the provided array contains data constituting an entire population).
     26         When computing the unbiased sample variance, setting this parameter to
     27         `1` is the standard choice (i.e., the provided array contains data
     28         sampled from a larger population; this is commonly referred to as
     29         Bessel's correction).
     30 
     31     x: Array<number>|TypedArray
     32         Input array.
     33 
     34     stride: integer
     35         Index increment.
     36 
     37     Returns
     38     -------
     39     out: number
     40         The variance.
     41 
     42     Examples
     43     --------
     44     // Standard Usage:
     45     > var x = [ 1.0, -2.0, 2.0 ];
     46     > {{alias}}( x.length, 1, x, 1 )
     47     ~4.3333
     48 
     49     // Using `N` and `stride` parameters:
     50     > x = [ -2.0, 1.0, 1.0, -5.0, 2.0, -1.0 ];
     51     > var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
     52     > var stride = 2;
     53     > {{alias}}( N, 1, x, stride )
     54     ~4.3333
     55 
     56     // Using view offsets:
     57     > var x0 = new {{alias:@stdlib/array/float64}}( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0 ] );
     58     > var x1 = new {{alias:@stdlib/array/float64}}( x0.buffer, x0.BYTES_PER_ELEMENT*1 );
     59     > N = {{alias:@stdlib/math/base/special/floor}}( x0.length / 2 );
     60     > stride = 2;
     61     > {{alias}}( N, 1, x1, stride )
     62     ~4.3333
     63 
     64 {{alias}}.ndarray( N, correction, x, stride, offset )
     65     Computes the variance of a strided array using a one-pass trial mean
     66     algorithm and alternative indexing semantics.
     67 
     68     While typed array views mandate a view offset based on the underlying
     69     buffer, the `offset` parameter supports indexing semantics based on a
     70     starting index.
     71 
     72     Parameters
     73     ----------
     74     N: integer
     75         Number of indexed elements.
     76 
     77     correction: number
     78         Degrees of freedom adjustment. Setting this parameter to a value other
     79         than `0` has the effect of adjusting the divisor during the calculation
     80         of the variance according to `N - c` where `c` corresponds to the
     81         provided degrees of freedom adjustment. When computing the variance of a
     82         population, setting this parameter to `0` is the standard choice (i.e.,
     83         the provided array contains data constituting an entire population).
     84         When computing the unbiased sample variance, setting this parameter to
     85         `1` is the standard choice (i.e., the provided array contains data
     86         sampled from a larger population; this is commonly referred to as
     87         Bessel's correction).
     88 
     89     x: Array<number>|TypedArray
     90         Input array.
     91 
     92     stride: integer
     93         Index increment.
     94 
     95     offset: integer
     96         Starting index.
     97 
     98     Returns
     99     -------
    100     out: number
    101         The variance.
    102 
    103     Examples
    104     --------
    105     // Standard Usage:
    106     > var x = [ 1.0, -2.0, 2.0 ];
    107     > {{alias}}.ndarray( x.length, 1, x, 1, 0 )
    108     ~4.3333
    109 
    110     // Using offset parameter:
    111     > var x = [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0 ];
    112     > var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
    113     > {{alias}}.ndarray( N, 1, x, 2, 1 )
    114     ~4.3333
    115 
    116     See Also
    117     --------
    118