README.md (9141B)
1 <!-- 2 3 @license Apache-2.0 4 5 Copyright (c) 2020 The Stdlib Authors. 6 7 Licensed under the Apache License, Version 2.0 (the "License"); 8 you may not use this file except in compliance with the License. 9 You may obtain a copy of the License at 10 11 http://www.apache.org/licenses/LICENSE-2.0 12 13 Unless required by applicable law or agreed to in writing, software 14 distributed under the License is distributed on an "AS IS" BASIS, 15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 See the License for the specific language governing permissions and 17 limitations under the License. 18 19 --> 20 21 # svarianceyc 22 23 > Calculate the [variance][variance] of a single-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer. 24 25 <section class="intro"> 26 27 The population [variance][variance] of a finite size population of size `N` is given by 28 29 <!-- <equation class="equation" label="eq:population_variance" align="center" raw="\sigma^2 = \frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2" alt="Equation for the population variance."> --> 30 31 <div class="equation" align="center" data-raw-text="\sigma^2 = \frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2" data-equation="eq:population_variance"> 32 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@19f3f41cde2b0aee2632b418eb7d7e9c1ea7d5dc/lib/node_modules/@stdlib/stats/base/svarianceyc/docs/img/equation_population_variance.svg" alt="Equation for the population variance."> 33 <br> 34 </div> 35 36 <!-- </equation> --> 37 38 where the population mean is given by 39 40 <!-- <equation class="equation" label="eq:population_mean" align="center" raw="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" alt="Equation for the population mean."> --> 41 42 <div class="equation" align="center" data-raw-text="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" data-equation="eq:population_mean"> 43 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@19f3f41cde2b0aee2632b418eb7d7e9c1ea7d5dc/lib/node_modules/@stdlib/stats/base/svarianceyc/docs/img/equation_population_mean.svg" alt="Equation for the population mean."> 44 <br> 45 </div> 46 47 <!-- </equation> --> 48 49 Often in the analysis of data, the true population [variance][variance] is not known _a priori_ and must be estimated from a sample drawn from the population distribution. If one attempts to use the formula for the population [variance][variance], the result is biased and yields a **biased sample variance**. To compute an **unbiased sample variance** for a sample of size `n`, 50 51 <!-- <equation class="equation" label="eq:unbiased_sample_variance" align="center" raw="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2" alt="Equation for computing an unbiased sample variance."> --> 52 53 <div class="equation" align="center" data-raw-text="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2" data-equation="eq:unbiased_sample_variance"> 54 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@19f3f41cde2b0aee2632b418eb7d7e9c1ea7d5dc/lib/node_modules/@stdlib/stats/base/svarianceyc/docs/img/equation_unbiased_sample_variance.svg" alt="Equation for computing an unbiased sample variance."> 55 <br> 56 </div> 57 58 <!-- </equation> --> 59 60 where the sample mean is given by 61 62 <!-- <equation class="equation" label="eq:sample_mean" align="center" raw="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" alt="Equation for the sample mean."> --> 63 64 <div class="equation" align="center" data-raw-text="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" data-equation="eq:sample_mean"> 65 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@19f3f41cde2b0aee2632b418eb7d7e9c1ea7d5dc/lib/node_modules/@stdlib/stats/base/svarianceyc/docs/img/equation_sample_mean.svg" alt="Equation for the sample mean."> 66 <br> 67 </div> 68 69 <!-- </equation> --> 70 71 The use of the term `n-1` is commonly referred to as Bessel's correction. Note, however, that applying Bessel's correction can increase the mean squared error between the sample variance and population variance. Depending on the characteristics of the population distribution, other correction factors (e.g., `n-1.5`, `n+1`, etc) can yield better estimators. 72 73 </section> 74 75 <!-- /.intro --> 76 77 <section class="usage"> 78 79 ## Usage 80 81 ```javascript 82 var svarianceyc = require( '@stdlib/stats/base/svarianceyc' ); 83 ``` 84 85 #### svarianceyc( N, correction, x, stride ) 86 87 Computes the [variance][variance] of a single-precision floating-point strided array `x` using a one-pass algorithm proposed by Youngs and Cramer. 88 89 ```javascript 90 var Float32Array = require( '@stdlib/array/float32' ); 91 92 var x = new Float32Array( [ 1.0, -2.0, 2.0 ] ); 93 var N = x.length; 94 95 var v = svarianceyc( N, 1, x, 1 ); 96 // returns ~4.3333 97 ``` 98 99 The function has the following parameters: 100 101 - **N**: number of indexed elements. 102 - **correction**: degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [variance][variance] according to `N-c` where `c` corresponds to the provided degrees of freedom adjustment. When computing the [variance][variance] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the unbiased sample [variance][variance], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction). 103 - **x**: input [`Float32Array`][@stdlib/array/float32]. 104 - **stride**: index increment for `x`. 105 106 The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [variance][variance] of every other element in `x`, 107 108 ```javascript 109 var Float32Array = require( '@stdlib/array/float32' ); 110 var floor = require( '@stdlib/math/base/special/floor' ); 111 112 var x = new Float32Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] ); 113 var N = floor( x.length / 2 ); 114 115 var v = svarianceyc( N, 1, x, 2 ); 116 // returns 6.25 117 ``` 118 119 Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views. 120 121 <!-- eslint-disable stdlib/capitalized-comments --> 122 123 ```javascript 124 var Float32Array = require( '@stdlib/array/float32' ); 125 var floor = require( '@stdlib/math/base/special/floor' ); 126 127 var x0 = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] ); 128 var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element 129 130 var N = floor( x0.length / 2 ); 131 132 var v = svarianceyc( N, 1, x1, 2 ); 133 // returns 6.25 134 ``` 135 136 #### svarianceyc.ndarray( N, correction, x, stride, offset ) 137 138 Computes the [variance][variance] of a single-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer and alternative indexing semantics. 139 140 ```javascript 141 var Float32Array = require( '@stdlib/array/float32' ); 142 143 var x = new Float32Array( [ 1.0, -2.0, 2.0 ] ); 144 var N = x.length; 145 146 var v = svarianceyc.ndarray( N, 1, x, 1, 0 ); 147 // returns ~4.33333 148 ``` 149 150 The function has the following additional parameters: 151 152 - **offset**: starting index for `x`. 153 154 While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [variance][variance] for every other value in `x` starting from the second value 155 156 ```javascript 157 var Float32Array = require( '@stdlib/array/float32' ); 158 var floor = require( '@stdlib/math/base/special/floor' ); 159 160 var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] ); 161 var N = floor( x.length / 2 ); 162 163 var v = svarianceyc.ndarray( N, 1, x, 2, 1 ); 164 // returns 6.25 165 ``` 166 167 </section> 168 169 <!-- /.usage --> 170 171 <section class="notes"> 172 173 ## Notes 174 175 - If `N <= 0`, both functions return `NaN`. 176 - If `N - c` is less than or equal to `0` (where `c` corresponds to the provided degrees of freedom adjustment), both functions return `NaN`. 177 178 </section> 179 180 <!-- /.notes --> 181 182 <section class="examples"> 183 184 ## Examples 185 186 <!-- eslint no-undef: "error" --> 187 188 ```javascript 189 var randu = require( '@stdlib/random/base/randu' ); 190 var round = require( '@stdlib/math/base/special/round' ); 191 var Float32Array = require( '@stdlib/array/float32' ); 192 var svarianceyc = require( '@stdlib/stats/base/svarianceyc' ); 193 194 var x; 195 var i; 196 197 x = new Float32Array( 10 ); 198 for ( i = 0; i < x.length; i++ ) { 199 x[ i ] = round( (randu()*100.0) - 50.0 ); 200 } 201 console.log( x ); 202 203 var v = svarianceyc( x.length, 1, x, 1 ); 204 console.log( v ); 205 ``` 206 207 </section> 208 209 <!-- /.examples --> 210 211 * * * 212 213 <section class="references"> 214 215 ## References 216 217 - Youngs, Edward A., and Elliot M. Cramer. 1971. "Some Results Relevant to Choice of Sum and Sum-of-Product Algorithms." _Technometrics_ 13 (3): 657–65. doi:[10.1080/00401706.1971.10488826][@youngs:1971a]. 218 219 </section> 220 221 <!-- /.references --> 222 223 <section class="links"> 224 225 [variance]: https://en.wikipedia.org/wiki/Variance 226 227 [@stdlib/array/float32]: https://www.npmjs.com/package/@stdlib/array-float32 228 229 [mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray 230 231 [@youngs:1971a]: https://doi.org/10.1080/00401706.1971.10488826 232 233 </section> 234 235 <!-- /.links -->