time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (12132B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2020 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # svariancetk
     22 
     23 > Calculate the [variance][variance] of a single-precision floating-point strided array using a one-pass textbook algorithm.
     24 
     25 <section class="intro">
     26 
     27 The population [variance][variance] of a finite size population of size `N` is given by
     28 
     29 <!-- <equation class="equation" label="eq:population_variance" align="center" raw="\sigma^2 = \frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2" alt="Equation for the population variance."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="\sigma^2 = \frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2" data-equation="eq:population_variance">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@6da3e7388e483798f23a9ce30fcb35f454e7e3b4/lib/node_modules/@stdlib/stats/base/svariancetk/docs/img/equation_population_variance.svg" alt="Equation for the population variance.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 where the population mean is given by
     39 
     40 <!-- <equation class="equation" label="eq:population_mean" align="center" raw="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" alt="Equation for the population mean."> -->
     41 
     42 <div class="equation" align="center" data-raw-text="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" data-equation="eq:population_mean">
     43     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@6da3e7388e483798f23a9ce30fcb35f454e7e3b4/lib/node_modules/@stdlib/stats/base/svariancetk/docs/img/equation_population_mean.svg" alt="Equation for the population mean.">
     44     <br>
     45 </div>
     46 
     47 <!-- </equation> -->
     48 
     49 After rearranging terms, the population [variance][variance] can be equivalently expressed as
     50 
     51 <!-- <equation class="equation" label="eq:population_variance_textbook" align="center" raw="\sigma^2 = \frac{1}{N}\biggl(\ \sum_{i=0}^{N-1} x_i^2 - \frac{1}{N}\biggl(\ \sum_{i=0}^{N-1} x_i \ \biggr)^2\ \biggr)" alt="Equation for the population variance (one-pass textbook formula)."> -->
     52 
     53 <div class="equation" align="center" data-raw-text="\sigma^2 = \frac{1}{N}\biggl(\ \sum_{i=0}^{N-1} x_i^2 - \frac{1}{N}\biggl(\ \sum_{i=0}^{N-1} x_i \ \biggr)^2\ \biggr)" data-equation="eq:population_variance_textbook">
     54     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@6da3e7388e483798f23a9ce30fcb35f454e7e3b4/lib/node_modules/@stdlib/stats/base/svariancetk/docs/img/equation_population_variance_textbook.svg" alt="Equation for the population variance (one-pass textbook formula).">
     55     <br>
     56 </div>
     57 
     58 <!-- </equation> -->
     59 
     60 Often in the analysis of data, the true population [variance][variance] is not known _a priori_ and must be estimated from a sample drawn from the population distribution. If one attempts to use the formula for the population [variance][variance], the result is biased and yields a **biased sample variance**. To compute an **unbiased sample variance** for a sample of size `n`,
     61 
     62 <!-- <equation class="equation" label="eq:unbiased_sample_variance" align="center" raw="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2" alt="Equation for computing an unbiased sample variance."> -->
     63 
     64 <div class="equation" align="center" data-raw-text="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2" data-equation="eq:unbiased_sample_variance">
     65     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@6da3e7388e483798f23a9ce30fcb35f454e7e3b4/lib/node_modules/@stdlib/stats/base/svariancetk/docs/img/equation_unbiased_sample_variance.svg" alt="Equation for computing an unbiased sample variance.">
     66     <br>
     67 </div>
     68 
     69 <!-- </equation> -->
     70 
     71 where the sample mean is given by
     72 
     73 <!-- <equation class="equation" label="eq:sample_mean" align="center" raw="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" alt="Equation for the sample mean."> -->
     74 
     75 <div class="equation" align="center" data-raw-text="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" data-equation="eq:sample_mean">
     76     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@6da3e7388e483798f23a9ce30fcb35f454e7e3b4/lib/node_modules/@stdlib/stats/base/svariancetk/docs/img/equation_sample_mean.svg" alt="Equation for the sample mean.">
     77     <br>
     78 </div>
     79 
     80 <!-- </equation> -->
     81 
     82 Similar to the population [variance][variance], after rearranging terms, the **unbiased sample variance** can be equivalently expressed as
     83 
     84 <!-- <equation class="equation" label="eq:unbiased_sample_variance_textbook" align="center" raw="s^2 = \frac{1}{n-1}\biggl(\ \sum_{i=0}^{n-1} x_i^2 - \frac{1}{n}\biggl(\ \sum_{i=0}^{n-1} x_i \ \biggr)^2\ \biggr)" alt="Equation for the unbiased sample variance (one-pass textbook formula)."> -->
     85 
     86 <div class="equation" align="center" data-raw-text="s^2 = \frac{1}{n-1}\biggl(\ \sum_{i=0}^{n-1} x_i^2 - \frac{1}{n}\biggl(\ \sum_{i=0}^{n-1} x_i \ \biggr)^2\ \biggr)" data-equation="eq:unbiased_sample_variance_textbook">
     87     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@6da3e7388e483798f23a9ce30fcb35f454e7e3b4/lib/node_modules/@stdlib/stats/base/svariancetk/docs/img/equation_unbiased_sample_variance_textbook.svg" alt="Equation for the unbiased sample variance (one-pass textbook formula).">
     88     <br>
     89 </div>
     90 
     91 <!-- </equation> -->
     92 
     93 The use of the term `n-1` is commonly referred to as Bessel's correction. Note, however, that applying Bessel's correction can increase the mean squared error between the sample variance and population variance. Depending on the characteristics of the population distribution, other correction factors (e.g., `n-1.5`, `n+1`, etc) can yield better estimators.
     94 
     95 </section>
     96 
     97 <!-- /.intro -->
     98 
     99 <section class="usage">
    100 
    101 ## Usage
    102 
    103 ```javascript
    104 var svariancetk = require( '@stdlib/stats/base/svariancetk' );
    105 ```
    106 
    107 #### svariancetk( N, correction, x, stride )
    108 
    109 Computes the [variance][variance] of a single-precision floating-point strided array `x` using a one-pass textbook algorithm.
    110 
    111 ```javascript
    112 var Float32Array = require( '@stdlib/array/float32' );
    113 
    114 var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );
    115 var N = x.length;
    116 
    117 var v = svariancetk( N, 1, x, 1 );
    118 // returns ~4.3333
    119 ```
    120 
    121 The function has the following parameters:
    122 
    123 -   **N**: number of indexed elements.
    124 -   **correction**: degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [variance][variance] according to `N-c` where `c` corresponds to the provided degrees of freedom adjustment. When computing the [variance][variance] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the unbiased sample [variance][variance], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
    125 -   **x**: input [`Float32Array`][@stdlib/array/float32].
    126 -   **stride**: index increment for `x`.
    127 
    128 The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [variance][variance] of every other element in `x`,
    129 
    130 ```javascript
    131 var Float32Array = require( '@stdlib/array/float32' );
    132 var floor = require( '@stdlib/math/base/special/floor' );
    133 
    134 var x = new Float32Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
    135 var N = floor( x.length / 2 );
    136 
    137 var v = svariancetk( N, 1, x, 2 );
    138 // returns 6.25
    139 ```
    140 
    141 Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.
    142 
    143 <!-- eslint-disable stdlib/capitalized-comments -->
    144 
    145 ```javascript
    146 var Float32Array = require( '@stdlib/array/float32' );
    147 var floor = require( '@stdlib/math/base/special/floor' );
    148 
    149 var x0 = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
    150 var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
    151 
    152 var N = floor( x0.length / 2 );
    153 
    154 var v = svariancetk( N, 1, x1, 2 );
    155 // returns 6.25
    156 ```
    157 
    158 #### svariancetk.ndarray( N, correction, x, stride, offset )
    159 
    160 Computes the [variance][variance] of a single-precision floating-point strided array using a one-pass textbook algorithm and alternative indexing semantics.
    161 
    162 ```javascript
    163 var Float32Array = require( '@stdlib/array/float32' );
    164 
    165 var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );
    166 var N = x.length;
    167 
    168 var v = svariancetk.ndarray( N, 1, x, 1, 0 );
    169 // returns ~4.33333
    170 ```
    171 
    172 The function has the following additional parameters:
    173 
    174 -   **offset**: starting index for `x`.
    175 
    176 While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [variance][variance] for every other value in `x` starting from the second value
    177 
    178 ```javascript
    179 var Float32Array = require( '@stdlib/array/float32' );
    180 var floor = require( '@stdlib/math/base/special/floor' );
    181 
    182 var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
    183 var N = floor( x.length / 2 );
    184 
    185 var v = svariancetk.ndarray( N, 1, x, 2, 1 );
    186 // returns 6.25
    187 ```
    188 
    189 </section>
    190 
    191 <!-- /.usage -->
    192 
    193 <section class="notes">
    194 
    195 ## Notes
    196 
    197 -   If `N <= 0`, both functions return `NaN`.
    198 -   If `N - c` is less than or equal to `0` (where `c` corresponds to the provided degrees of freedom adjustment), both functions return `NaN`.
    199 -   Some caution should be exercised when using the one-pass textbook algorithm. Literature overwhelmingly discourages the algorithm's use for two reasons: 1) the lack of safeguards against underflow and overflow and 2) the risk of catastrophic cancellation when subtracting the two sums if the sums are large and the variance small. These concerns have merit; however, the one-pass textbook algorithm should not be dismissed outright. For data distributions with a moderately large standard deviation to mean ratio (i.e., **coefficient of variation**), the one-pass textbook algorithm may be acceptable, especially when performance is paramount and some precision loss is acceptable (including a risk of returning a negative variance due to floating-point rounding errors!). In short, no single "best" algorithm for computing the variance exists. The "best" algorithm depends on the underlying data distribution, your performance requirements, and your minimum precision requirements. When evaluating which algorithm to use, consider the relative pros and cons, and choose the algorithm which best serves your needs.
    200 
    201 </section>
    202 
    203 <!-- /.notes -->
    204 
    205 <section class="examples">
    206 
    207 ## Examples
    208 
    209 <!-- eslint no-undef: "error" -->
    210 
    211 ```javascript
    212 var randu = require( '@stdlib/random/base/randu' );
    213 var round = require( '@stdlib/math/base/special/round' );
    214 var Float32Array = require( '@stdlib/array/float32' );
    215 var svariancetk = require( '@stdlib/stats/base/svariancetk' );
    216 
    217 var x;
    218 var i;
    219 
    220 x = new Float32Array( 10 );
    221 for ( i = 0; i < x.length; i++ ) {
    222     x[ i ] = round( (randu()*100.0) - 50.0 );
    223 }
    224 console.log( x );
    225 
    226 var v = svariancetk( x.length, 1, x, 1 );
    227 console.log( v );
    228 ```
    229 
    230 </section>
    231 
    232 <!-- /.examples -->
    233 
    234 * * *
    235 
    236 <section class="references">
    237 
    238 ## References
    239 
    240 -   Ling, Robert F. 1974. "Comparison of Several Algorithms for Computing Sample Means and Variances." _Journal of the American Statistical Association_ 69 (348). American Statistical Association, Taylor & Francis, Ltd.: 859–66. doi:[10.2307/2286154][@ling:1974a].
    241 
    242 </section>
    243 
    244 <!-- /.references -->
    245 
    246 <section class="links">
    247 
    248 [variance]: https://en.wikipedia.org/wiki/Variance
    249 
    250 [@stdlib/array/float32]: https://www.npmjs.com/package/@stdlib/array-float32
    251 
    252 [mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
    253 
    254 [@ling:1974a]: https://doi.org/10.2307/2286154
    255 
    256 </section>
    257 
    258 <!-- /.links -->