README.md (10598B)
1 <!-- 2 3 @license Apache-2.0 4 5 Copyright (c) 2020 The Stdlib Authors. 6 7 Licensed under the Apache License, Version 2.0 (the "License"); 8 you may not use this file except in compliance with the License. 9 You may obtain a copy of the License at 10 11 http://www.apache.org/licenses/LICENSE-2.0 12 13 Unless required by applicable law or agreed to in writing, software 14 distributed under the License is distributed on an "AS IS" BASIS, 15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 See the License for the specific language governing permissions and 17 limitations under the License. 18 19 --> 20 21 # stdevtk 22 23 > Calculate the [standard deviation][standard-deviation] of a strided array using a one-pass textbook algorithm. 24 25 <section class="intro"> 26 27 The population [standard deviation][standard-deviation] of a finite size population of size `N` is given by 28 29 <!-- <equation class="equation" label="eq:population_standard_deviation" align="center" raw="\sigma = \sqrt{\frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2}" alt="Equation for the population standard deviation."> --> 30 31 <div class="equation" align="center" data-raw-text="\sigma = \sqrt{\frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2}" data-equation="eq:population_standard_deviation"> 32 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@1685f915feee8c7d26b90643d00105b4b6803eb4/lib/node_modules/@stdlib/stats/base/stdevtk/docs/img/equation_population_standard_deviation.svg" alt="Equation for the population standard deviation."> 33 <br> 34 </div> 35 36 <!-- </equation> --> 37 38 where the population mean is given by 39 40 <!-- <equation class="equation" label="eq:population_mean" align="center" raw="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" alt="Equation for the population mean."> --> 41 42 <div class="equation" align="center" data-raw-text="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" data-equation="eq:population_mean"> 43 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@1685f915feee8c7d26b90643d00105b4b6803eb4/lib/node_modules/@stdlib/stats/base/stdevtk/docs/img/equation_population_mean.svg" alt="Equation for the population mean."> 44 <br> 45 </div> 46 47 <!-- </equation> --> 48 49 Often in the analysis of data, the true population [standard deviation][standard-deviation] is not known _a priori_ and must be estimated from a sample drawn from the population distribution. If one attempts to use the formula for the population [standard deviation][standard-deviation], the result is biased and yields an **uncorrected sample standard deviation**. To compute a **corrected sample standard deviation** for a sample of size `n`, 50 51 <!-- <equation class="equation" label="eq:corrected_sample_standard_deviation" align="center" raw="s = \sqrt{\frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2}" alt="Equation for computing a corrected sample standard deviation."> --> 52 53 <div class="equation" align="center" data-raw-text="s = \sqrt{\frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2}" data-equation="eq:corrected_sample_standard_deviation"> 54 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@1685f915feee8c7d26b90643d00105b4b6803eb4/lib/node_modules/@stdlib/stats/base/stdevtk/docs/img/equation_corrected_sample_standard_deviation.svg" alt="Equation for computing a corrected sample standard deviation."> 55 <br> 56 </div> 57 58 <!-- </equation> --> 59 60 where the sample mean is given by 61 62 <!-- <equation class="equation" label="eq:sample_mean" align="center" raw="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" alt="Equation for the sample mean."> --> 63 64 <div class="equation" align="center" data-raw-text="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" data-equation="eq:sample_mean"> 65 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@1685f915feee8c7d26b90643d00105b4b6803eb4/lib/node_modules/@stdlib/stats/base/stdevtk/docs/img/equation_sample_mean.svg" alt="Equation for the sample mean."> 66 <br> 67 </div> 68 69 <!-- </equation> --> 70 71 The use of the term `n-1` is commonly referred to as Bessel's correction. Note, however, that applying Bessel's correction can increase the mean squared error between the sample standard deviation and population standard deviation. Depending on the characteristics of the population distribution, other correction factors (e.g., `n-1.5`, `n+1`, etc) can yield better estimators. 72 73 </section> 74 75 <!-- /.intro --> 76 77 <section class="usage"> 78 79 ## Usage 80 81 ```javascript 82 var stdevtk = require( '@stdlib/stats/base/stdevtk' ); 83 ``` 84 85 #### stdevtk( N, correction, x, stride ) 86 87 Computes the [standard deviation][standard-deviation] of a strided array `x` using a one-pass textbook algorithm. 88 89 ```javascript 90 var x = [ 1.0, -2.0, 2.0 ]; 91 92 var v = stdevtk( x.length, 1, x, 1 ); 93 // returns ~2.0817 94 ``` 95 96 The function has the following parameters: 97 98 - **N**: number of indexed elements. 99 - **correction**: degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [standard deviation][standard-deviation] according to `N-c` where `c` corresponds to the provided degrees of freedom adjustment. When computing the [standard deviation][standard-deviation] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the corrected sample [standard deviation][standard-deviation], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction). 100 - **x**: input [`Array`][mdn-array] or [`typed array`][mdn-typed-array]. 101 - **stride**: index increment for `x`. 102 103 The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [standard deviation][standard-deviation] of every other element in `x`, 104 105 ```javascript 106 var floor = require( '@stdlib/math/base/special/floor' ); 107 108 var x = [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ]; 109 var N = floor( x.length / 2 ); 110 111 var v = stdevtk( N, 1, x, 2 ); 112 // returns 2.5 113 ``` 114 115 Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views. 116 117 <!-- eslint-disable stdlib/capitalized-comments --> 118 119 ```javascript 120 var Float64Array = require( '@stdlib/array/float64' ); 121 var floor = require( '@stdlib/math/base/special/floor' ); 122 123 var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] ); 124 var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element 125 126 var N = floor( x0.length / 2 ); 127 128 var v = stdevtk( N, 1, x1, 2 ); 129 // returns 2.5 130 ``` 131 132 #### stdevtk.ndarray( N, correction, x, stride, offset ) 133 134 Computes the [standard deviation][standard-deviation] of a strided array using a one-pass textbook algorithm and alternative indexing semantics. 135 136 ```javascript 137 var x = [ 1.0, -2.0, 2.0 ]; 138 139 var v = stdevtk.ndarray( x.length, 1, x, 1, 0 ); 140 // returns ~2.0817 141 ``` 142 143 The function has the following additional parameters: 144 145 - **offset**: starting index for `x`. 146 147 While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [standard deviation][standard-deviation] for every other value in `x` starting from the second value 148 149 ```javascript 150 var floor = require( '@stdlib/math/base/special/floor' ); 151 152 var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ]; 153 var N = floor( x.length / 2 ); 154 155 var v = stdevtk.ndarray( N, 1, x, 2, 1 ); 156 // returns 2.5 157 ``` 158 159 </section> 160 161 <!-- /.usage --> 162 163 <section class="notes"> 164 165 ## Notes 166 167 - If `N <= 0`, both functions return `NaN`. 168 - If `N - c` is less than or equal to `0` (where `c` corresponds to the provided degrees of freedom adjustment), both functions return `NaN`. 169 - Some caution should be exercised when using the one-pass textbook algorithm. Literature overwhelmingly discourages the algorithm's use for two reasons: 1) the lack of safeguards against underflow and overflow and 2) the risk of catastrophic cancellation when subtracting the two sums if the sums are large and the variance small. These concerns have merit; however, the one-pass textbook algorithm should not be dismissed outright. For data distributions with a moderately large standard deviation to mean ratio (i.e., **coefficient of variation**), the one-pass textbook algorithm may be acceptable, especially when performance is paramount and some precision loss is acceptable (including a risk of computing a negative variance due to floating-point rounding errors!). In short, no single "best" algorithm for computing the standard deviation exists. The "best" algorithm depends on the underlying data distribution, your performance requirements, and your minimum precision requirements. When evaluating which algorithm to use, consider the relative pros and cons, and choose the algorithm which best serves your needs. 170 - Depending on the environment, the typed versions ([`dstdevtk`][@stdlib/stats/base/dstdevtk], [`sstdevtk`][@stdlib/stats/base/sstdevtk], etc.) are likely to be significantly more performant. 171 172 </section> 173 174 <!-- /.notes --> 175 176 <section class="examples"> 177 178 ## Examples 179 180 <!-- eslint no-undef: "error" --> 181 182 ```javascript 183 var randu = require( '@stdlib/random/base/randu' ); 184 var round = require( '@stdlib/math/base/special/round' ); 185 var Float64Array = require( '@stdlib/array/float64' ); 186 var stdevtk = require( '@stdlib/stats/base/stdevtk' ); 187 188 var x; 189 var i; 190 191 x = new Float64Array( 10 ); 192 for ( i = 0; i < x.length; i++ ) { 193 x[ i ] = round( (randu()*100.0) - 50.0 ); 194 } 195 console.log( x ); 196 197 var v = stdevtk( x.length, 1, x, 1 ); 198 console.log( v ); 199 ``` 200 201 </section> 202 203 <!-- /.examples --> 204 205 * * * 206 207 <section class="references"> 208 209 ## References 210 211 - Ling, Robert F. 1974. "Comparison of Several Algorithms for Computing Sample Means and Variances." _Journal of the American Statistical Association_ 69 (348). American Statistical Association, Taylor & Francis, Ltd.: 859–66. doi:[10.2307/2286154][@ling:1974a]. 212 213 </section> 214 215 <!-- /.references --> 216 217 <section class="links"> 218 219 [standard-deviation]: https://en.wikipedia.org/wiki/Standard_deviation 220 221 [mdn-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array 222 223 [mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray 224 225 [@stdlib/stats/base/dstdevtk]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dstdevtk 226 227 [@stdlib/stats/base/sstdevtk]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/sstdevtk 228 229 [@ling:1974a]: https://doi.org/10.2307/2286154 230 231 </section> 232 233 <!-- /.links -->