snanvarianceyc.js (2768B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var float64ToFloat32 = require( '@stdlib/number/float64/base/to-float32' ); 24 25 26 // MAIN // 27 28 /** 29 * Computes the variance of a single-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer. 30 * 31 * ## Method 32 * 33 * - This implementation uses a one-pass algorithm, as proposed by Youngs and Cramer (1971). 34 * 35 * ## References 36 * 37 * - Youngs, Edward A., and Elliot M. Cramer. 1971. "Some Results Relevant to Choice of Sum and Sum-of-Product Algorithms." _Technometrics_ 13 (3): 657–65. doi:[10.1080/00401706.1971.10488826](https://doi.org/10.1080/00401706.1971.10488826). 38 * 39 * @param {PositiveInteger} N - number of indexed elements 40 * @param {number} correction - degrees of freedom adjustment 41 * @param {Float32Array} x - input array 42 * @param {integer} stride - stride length 43 * @returns {number} variance 44 * 45 * @example 46 * var Float32Array = require( '@stdlib/array/float32' ); 47 * 48 * var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] ); 49 * var N = x.length; 50 * 51 * var v = snanvarianceyc( N, 1, x, 1 ); 52 * // returns ~4.3333 53 */ 54 function snanvarianceyc( N, correction, x, stride ) { 55 var sum; 56 var ix; 57 var nc; 58 var S; 59 var v; 60 var d; 61 var n; 62 var i; 63 64 if ( N <= 0 ) { 65 return NaN; 66 } 67 if ( N === 1 || stride === 0 ) { 68 v = x[ 0 ]; 69 if ( v === v && N-correction > 0.0 ) { 70 return 0.0; 71 } 72 return NaN; 73 } 74 if ( stride < 0 ) { 75 ix = (1-N) * stride; 76 } else { 77 ix = 0; 78 } 79 // Find the first non-NaN element... 80 for ( i = 0; i < N; i++ ) { 81 v = x[ ix ]; 82 if ( v === v ) { 83 break; 84 } 85 ix += stride; 86 } 87 if ( i === N ) { 88 return NaN; 89 } 90 ix += stride; 91 sum = v; 92 S = 0.0; 93 i += 1; 94 n = 1; 95 for ( i; i < N; i++ ) { 96 v = x[ ix ]; 97 if ( v === v ) { 98 n += 1; 99 sum = float64ToFloat32( sum + v ); 100 d = float64ToFloat32( float64ToFloat32(n*v) - sum ); 101 S = float64ToFloat32( S + float64ToFloat32( float64ToFloat32( float64ToFloat32(1.0/(n*(n-1))) * d ) * d ) ); // eslint-disable-line max-len 102 } 103 ix += stride; 104 } 105 nc = n - correction; 106 if ( nc <= 0.0 ) { 107 return NaN; 108 } 109 return float64ToFloat32( S / nc ); 110 } 111 112 113 // EXPORTS // 114 115 module.exports = snanvarianceyc;