ndarray.js (2887B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var float64ToFloat32 = require( '@stdlib/number/float64/base/to-float32' ); 24 25 26 // MAIN // 27 28 /** 29 * Computes the variance of a single-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer. 30 * 31 * ## Method 32 * 33 * - This implementation uses a one-pass algorithm, as proposed by Youngs and Cramer (1971). 34 * 35 * ## References 36 * 37 * - Youngs, Edward A., and Elliot M. Cramer. 1971. "Some Results Relevant to Choice of Sum and Sum-of-Product Algorithms." _Technometrics_ 13 (3): 657–65. doi:[10.1080/00401706.1971.10488826](https://doi.org/10.1080/00401706.1971.10488826). 38 * 39 * @param {PositiveInteger} N - number of indexed elements 40 * @param {number} correction - degrees of freedom adjustment 41 * @param {Float32Array} x - input array 42 * @param {integer} stride - stride length 43 * @param {NonNegativeInteger} offset - starting index 44 * @returns {number} variance 45 * 46 * @example 47 * var Float32Array = require( '@stdlib/array/float32' ); 48 * var floor = require( '@stdlib/math/base/special/floor' ); 49 * 50 * var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] ); 51 * var N = floor( x.length / 2 ); 52 * 53 * var v = snanvarianceyc( N, 1, x, 2, 1 ); 54 * // returns 6.25 55 */ 56 function snanvarianceyc( N, correction, x, stride, offset ) { 57 var sum; 58 var ix; 59 var nc; 60 var S; 61 var v; 62 var d; 63 var n; 64 var i; 65 66 if ( N <= 0 ) { 67 return NaN; 68 } 69 if ( N === 1 || stride === 0 ) { 70 v = x[ offset ]; 71 if ( v === v && N-correction > 0.0 ) { 72 return 0.0; 73 } 74 return NaN; 75 } 76 ix = offset; 77 78 // Find the first non-NaN element... 79 for ( i = 0; i < N; i++ ) { 80 v = x[ ix ]; 81 if ( v === v ) { 82 break; 83 } 84 ix += stride; 85 } 86 if ( i === N ) { 87 return NaN; 88 } 89 ix += stride; 90 sum = v; 91 S = 0.0; 92 i += 1; 93 n = 1; 94 for ( i; i < N; i++ ) { 95 v = x[ ix ]; 96 if ( v === v ) { 97 n += 1; 98 sum = float64ToFloat32( sum + v ); 99 d = float64ToFloat32( float64ToFloat32(n*v) - sum ); 100 S = float64ToFloat32( S + float64ToFloat32( float64ToFloat32( float64ToFloat32(1.0/(n*(n-1))) * d ) * d ) ); // eslint-disable-line max-len 101 } 102 ix += stride; 103 } 104 nc = n - correction; 105 if ( nc <= 0.0 ) { 106 return NaN; 107 } 108 return float64ToFloat32( S / nc ); 109 } 110 111 112 // EXPORTS // 113 114 module.exports = snanvarianceyc;