time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (10491B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2020 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # snanvariancetk
     22 
     23 > Calculate the [variance][variance] of a single-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm.
     24 
     25 <section class="intro">
     26 
     27 The population [variance][variance] of a finite size population of size `N` is given by
     28 
     29 <!-- <equation class="equation" label="eq:population_variance" align="center" raw="\sigma^2 = \frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2" alt="Equation for the population variance."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="\sigma^2 = \frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2" data-equation="eq:population_variance">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@297a3840571ec47b113a85d876281fa719ae6570/lib/node_modules/@stdlib/stats/base/snanvariancetk/docs/img/equation_population_variance.svg" alt="Equation for the population variance.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 where the population mean is given by
     39 
     40 <!-- <equation class="equation" label="eq:population_mean" align="center" raw="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" alt="Equation for the population mean."> -->
     41 
     42 <div class="equation" align="center" data-raw-text="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" data-equation="eq:population_mean">
     43     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@297a3840571ec47b113a85d876281fa719ae6570/lib/node_modules/@stdlib/stats/base/snanvariancetk/docs/img/equation_population_mean.svg" alt="Equation for the population mean.">
     44     <br>
     45 </div>
     46 
     47 <!-- </equation> -->
     48 
     49 Often in the analysis of data, the true population [variance][variance] is not known _a priori_ and must be estimated from a sample drawn from the population distribution. If one attempts to use the formula for the population [variance][variance], the result is biased and yields a **biased sample variance**. To compute an **unbiased sample variance** for a sample of size `n`,
     50 
     51 <!-- <equation class="equation" label="eq:unbiased_sample_variance" align="center" raw="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2" alt="Equation for computing an unbiased sample variance."> -->
     52 
     53 <div class="equation" align="center" data-raw-text="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2" data-equation="eq:unbiased_sample_variance">
     54     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@297a3840571ec47b113a85d876281fa719ae6570/lib/node_modules/@stdlib/stats/base/snanvariancetk/docs/img/equation_unbiased_sample_variance.svg" alt="Equation for computing an unbiased sample variance.">
     55     <br>
     56 </div>
     57 
     58 <!-- </equation> -->
     59 
     60 where the sample mean is given by
     61 
     62 <!-- <equation class="equation" label="eq:sample_mean" align="center" raw="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" alt="Equation for the sample mean."> -->
     63 
     64 <div class="equation" align="center" data-raw-text="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" data-equation="eq:sample_mean">
     65     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@297a3840571ec47b113a85d876281fa719ae6570/lib/node_modules/@stdlib/stats/base/snanvariancetk/docs/img/equation_sample_mean.svg" alt="Equation for the sample mean.">
     66     <br>
     67 </div>
     68 
     69 <!-- </equation> -->
     70 
     71 The use of the term `n-1` is commonly referred to as Bessel's correction. Note, however, that applying Bessel's correction can increase the mean squared error between the sample variance and population variance. Depending on the characteristics of the population distribution, other correction factors (e.g., `n-1.5`, `n+1`, etc) can yield better estimators.
     72 
     73 </section>
     74 
     75 <!-- /.intro -->
     76 
     77 <section class="usage">
     78 
     79 ## Usage
     80 
     81 ```javascript
     82 var snanvariancetk = require( '@stdlib/stats/base/snanvariancetk' );
     83 ```
     84 
     85 #### snanvariancetk( N, correction, x, stride )
     86 
     87 Computes the [variance][variance] of a single-precision floating-point strided array `x` ignoring `NaN` values and using a one-pass textbook algorithm.
     88 
     89 ```javascript
     90 var Float32Array = require( '@stdlib/array/float32' );
     91 
     92 var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );
     93 
     94 var v = snanvariancetk( x.length, 1, x, 1 );
     95 // returns ~4.3333
     96 ```
     97 
     98 The function has the following parameters:
     99 
    100 -   **N**: number of indexed elements.
    101 -   **correction**: degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [variance][variance] according to `n-c` where `c` corresponds to the provided degrees of freedom adjustment and `n` corresponds to the number of non-`NaN` indexed elements. When computing the [variance][variance] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the unbiased sample [variance][variance], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
    102 -   **x**: input [`Float32Array`][@stdlib/array/float32].
    103 -   **stride**: index increment for `x`.
    104 
    105 The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [variance][variance] of every other element in `x`,
    106 
    107 ```javascript
    108 var Float32Array = require( '@stdlib/array/float32' );
    109 var floor = require( '@stdlib/math/base/special/floor' );
    110 
    111 var x = new Float32Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN ] );
    112 var N = floor( x.length / 2 );
    113 
    114 var v = snanvariancetk( N, 1, x, 2 );
    115 // returns 6.25
    116 ```
    117 
    118 Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.
    119 
    120 <!-- eslint-disable stdlib/capitalized-comments -->
    121 
    122 ```javascript
    123 var Float32Array = require( '@stdlib/array/float32' );
    124 var floor = require( '@stdlib/math/base/special/floor' );
    125 
    126 var x0 = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] );
    127 var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
    128 
    129 var N = floor( x0.length / 2 );
    130 
    131 var v = snanvariancetk( N, 1, x1, 2 );
    132 // returns 6.25
    133 ```
    134 
    135 #### snanvariancetk.ndarray( N, correction, x, stride, offset )
    136 
    137 Computes the [variance][variance] of a single-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm and alternative indexing semantics.
    138 
    139 ```javascript
    140 var Float32Array = require( '@stdlib/array/float32' );
    141 
    142 var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );
    143 
    144 var v = snanvariancetk.ndarray( x.length, 1, x, 1, 0 );
    145 // returns ~4.33333
    146 ```
    147 
    148 The function has the following additional parameters:
    149 
    150 -   **offset**: starting index for `x`.
    151 
    152 While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [variance][variance] for every other value in `x` starting from the second value
    153 
    154 ```javascript
    155 var Float32Array = require( '@stdlib/array/float32' );
    156 var floor = require( '@stdlib/math/base/special/floor' );
    157 
    158 var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
    159 var N = floor( x.length / 2 );
    160 
    161 var v = snanvariancetk.ndarray( N, 1, x, 2, 1 );
    162 // returns 6.25
    163 ```
    164 
    165 </section>
    166 
    167 <!-- /.usage -->
    168 
    169 <section class="notes">
    170 
    171 ## Notes
    172 
    173 -   If `N <= 0`, both functions return `NaN`.
    174 -   If `n - c` is less than or equal to `0` (where `c` corresponds to the provided degrees of freedom adjustment and `n` corresponds to the number of non-`NaN` indexed elements), both functions return `NaN`.
    175 -   Some caution should be exercised when using the one-pass textbook algorithm. Literature overwhelmingly discourages the algorithm's use for two reasons: 1) the lack of safeguards against underflow and overflow and 2) the risk of catastrophic cancellation when subtracting the two sums if the sums are large and the variance small. These concerns have merit; however, the one-pass textbook algorithm should not be dismissed outright. For data distributions with a moderately large standard deviation to mean ratio (i.e., **coefficient of variation**), the one-pass textbook algorithm may be acceptable, especially when performance is paramount and some precision loss is acceptable (including a risk of returning a negative variance due to floating-point rounding errors!). In short, no single "best" algorithm for computing the variance exists. The "best" algorithm depends on the underlying data distribution, your performance requirements, and your minimum precision requirements. When evaluating which algorithm to use, consider the relative pros and cons, and choose the algorithm which best serves your needs.
    176 
    177 </section>
    178 
    179 <!-- /.notes -->
    180 
    181 <section class="examples">
    182 
    183 ## Examples
    184 
    185 <!-- eslint no-undef: "error" -->
    186 
    187 ```javascript
    188 var randu = require( '@stdlib/random/base/randu' );
    189 var round = require( '@stdlib/math/base/special/round' );
    190 var Float32Array = require( '@stdlib/array/float32' );
    191 var snanvariancetk = require( '@stdlib/stats/base/snanvariancetk' );
    192 
    193 var x;
    194 var i;
    195 
    196 x = new Float32Array( 10 );
    197 for ( i = 0; i < x.length; i++ ) {
    198     x[ i ] = round( (randu()*100.0) - 50.0 );
    199 }
    200 console.log( x );
    201 
    202 var v = snanvariancetk( x.length, 1, x, 1 );
    203 console.log( v );
    204 ```
    205 
    206 </section>
    207 
    208 <!-- /.examples -->
    209 
    210 * * *
    211 
    212 <section class="references">
    213 
    214 ## References
    215 
    216 -   Ling, Robert F. 1974. "Comparison of Several Algorithms for Computing Sample Means and Variances." _Journal of the American Statistical Association_ 69 (348). American Statistical Association, Taylor & Francis, Ltd.: 859–66. doi:[10.2307/2286154][@ling:1974a].
    217 
    218 </section>
    219 
    220 <!-- /.references -->
    221 
    222 <section class="links">
    223 
    224 [variance]: https://en.wikipedia.org/wiki/Variance
    225 
    226 [@stdlib/array/float32]: https://www.npmjs.com/package/@stdlib/array-float32
    227 
    228 [mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
    229 
    230 [@ling:1974a]: https://doi.org/10.2307/2286154
    231 
    232 </section>
    233 
    234 <!-- /.links -->