snanvariancepn.js (3241B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var float64ToFloat32 = require( '@stdlib/number/float64/base/to-float32' ); 24 var snansumpw = require( './snansumpw.js' ); 25 26 27 // VARIABLES // 28 29 var WORKSPACE = [ 0.0, 0 ]; 30 31 32 // MAIN // 33 34 /** 35 * Computes the variance of a single-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm. 36 * 37 * ## Method 38 * 39 * - This implementation uses a two-pass approach, as suggested by Neely (1966). 40 * 41 * ## References 42 * 43 * - Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958). 44 * - Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036). 45 * 46 * @param {PositiveInteger} N - number of indexed elements 47 * @param {number} correction - degrees of freedom adjustment 48 * @param {Float32Array} x - input array 49 * @param {integer} stride - stride length 50 * @returns {number} variance 51 * 52 * @example 53 * var Float32Array = require( '@stdlib/array/float32' ); 54 * 55 * var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] ); 56 * var N = x.length; 57 * 58 * var v = snanvariancepn( N, 1, x, 1 ); 59 * // returns ~4.3333 60 */ 61 function snanvariancepn( N, correction, x, stride ) { 62 var mu; 63 var ix; 64 var M2; 65 var nc; 66 var M; 67 var d; 68 var v; 69 var n; 70 var i; 71 72 if ( N <= 0 ) { 73 return NaN; 74 } 75 if ( N === 1 || stride === 0 ) { 76 v = x[ 0 ]; 77 if ( v === v && N-correction > 0.0 ) { 78 return 0.0; 79 } 80 return NaN; 81 } 82 if ( stride < 0 ) { 83 ix = (1-N) * stride; 84 } else { 85 ix = 0; 86 } 87 // Compute an estimate for the mean... 88 WORKSPACE[ 0 ] = 0.0; 89 WORKSPACE[ 1 ] = 0; 90 snansumpw( N, WORKSPACE, x, stride, ix ); 91 n = WORKSPACE[ 1 ]; 92 nc = n - correction; 93 if ( nc <= 0.0 ) { 94 return NaN; 95 } 96 mu = float64ToFloat32( WORKSPACE[ 0 ] / n ); 97 98 // Compute the variance... 99 M2 = 0.0; 100 M = 0.0; 101 for ( i = 0; i < N; i++ ) { 102 v = x[ ix ]; 103 if ( v === v ) { 104 d = float64ToFloat32( v - mu ); 105 M2 = float64ToFloat32( M2 + float64ToFloat32( d*d ) ); 106 M = float64ToFloat32( M + d ); 107 n += 1; 108 } 109 ix += stride; 110 } 111 return float64ToFloat32( float64ToFloat32(M2/nc) - float64ToFloat32(float64ToFloat32(M/n)*float64ToFloat32(M/nc)) ); // eslint-disable-line max-len 112 } 113 114 115 // EXPORTS // 116 117 module.exports = snanvariancepn;