time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (9723B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2020 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # snanvariancepn
     22 
     23 > Calculate the [variance][variance] of a single-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm.
     24 
     25 <section class="intro">
     26 
     27 The population [variance][variance] of a finite size population of size `N` is given by
     28 
     29 <!-- <equation class="equation" label="eq:population_variance" align="center" raw="\sigma^2 = \frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2" alt="Equation for the population variance."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="\sigma^2 = \frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2" data-equation="eq:population_variance">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@d78f524f2ccddb696670f1a30bb4a39b5b6e8e19/lib/node_modules/@stdlib/stats/base/snanvariancepn/docs/img/equation_population_variance.svg" alt="Equation for the population variance.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 where the population mean is given by
     39 
     40 <!-- <equation class="equation" label="eq:population_mean" align="center" raw="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" alt="Equation for the population mean."> -->
     41 
     42 <div class="equation" align="center" data-raw-text="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" data-equation="eq:population_mean">
     43     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@d78f524f2ccddb696670f1a30bb4a39b5b6e8e19/lib/node_modules/@stdlib/stats/base/snanvariancepn/docs/img/equation_population_mean.svg" alt="Equation for the population mean.">
     44     <br>
     45 </div>
     46 
     47 <!-- </equation> -->
     48 
     49 Often in the analysis of data, the true population [variance][variance] is not known _a priori_ and must be estimated from a sample drawn from the population distribution. If one attempts to use the formula for the population [variance][variance], the result is biased and yields a **biased sample variance**. To compute an **unbiased sample variance** for a sample of size `n`,
     50 
     51 <!-- <equation class="equation" label="eq:unbiased_sample_variance" align="center" raw="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2" alt="Equation for computing an unbiased sample variance."> -->
     52 
     53 <div class="equation" align="center" data-raw-text="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2" data-equation="eq:unbiased_sample_variance">
     54     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@d78f524f2ccddb696670f1a30bb4a39b5b6e8e19/lib/node_modules/@stdlib/stats/base/snanvariancepn/docs/img/equation_unbiased_sample_variance.svg" alt="Equation for computing an unbiased sample variance.">
     55     <br>
     56 </div>
     57 
     58 <!-- </equation> -->
     59 
     60 where the sample mean is given by
     61 
     62 <!-- <equation class="equation" label="eq:sample_mean" align="center" raw="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" alt="Equation for the sample mean."> -->
     63 
     64 <div class="equation" align="center" data-raw-text="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" data-equation="eq:sample_mean">
     65     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@d78f524f2ccddb696670f1a30bb4a39b5b6e8e19/lib/node_modules/@stdlib/stats/base/snanvariancepn/docs/img/equation_sample_mean.svg" alt="Equation for the sample mean.">
     66     <br>
     67 </div>
     68 
     69 <!-- </equation> -->
     70 
     71 The use of the term `n-1` is commonly referred to as Bessel's correction. Note, however, that applying Bessel's correction can increase the mean squared error between the sample variance and population variance. Depending on the characteristics of the population distribution, other correction factors (e.g., `n-1.5`, `n+1`, etc) can yield better estimators.
     72 
     73 </section>
     74 
     75 <!-- /.intro -->
     76 
     77 <section class="usage">
     78 
     79 ## Usage
     80 
     81 ```javascript
     82 var snanvariancepn = require( '@stdlib/stats/base/snanvariancepn' );
     83 ```
     84 
     85 #### snanvariancepn( N, correction, x, stride )
     86 
     87 Computes the [variance][variance] of a single-precision floating-point strided array `x` ignoring `NaN` values and using a two-pass algorithm.
     88 
     89 ```javascript
     90 var Float32Array = require( '@stdlib/array/float32' );
     91 
     92 var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );
     93 
     94 var v = snanvariancepn( x.length, 1, x, 1 );
     95 // returns ~4.3333
     96 ```
     97 
     98 The function has the following parameters:
     99 
    100 -   **N**: number of indexed elements.
    101 -   **correction**: degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [variance][variance] according to `n-c` where `c` corresponds to the provided degrees of freedom adjustment and `n` corresponds to the number of non-`NaN` indexed elements. When computing the [variance][variance] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the unbiased sample [variance][variance], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
    102 -   **x**: input [`Float32Array`][@stdlib/array/float32].
    103 -   **stride**: index increment for `x`.
    104 
    105 The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [variance][variance] of every other element in `x`,
    106 
    107 ```javascript
    108 var Float32Array = require( '@stdlib/array/float32' );
    109 var floor = require( '@stdlib/math/base/special/floor' );
    110 
    111 var x = new Float32Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN ] );
    112 var N = floor( x.length / 2 );
    113 
    114 var v = snanvariancepn( N, 1, x, 2 );
    115 // returns 6.25
    116 ```
    117 
    118 Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.
    119 
    120 <!-- eslint-disable stdlib/capitalized-comments -->
    121 
    122 ```javascript
    123 var Float32Array = require( '@stdlib/array/float32' );
    124 var floor = require( '@stdlib/math/base/special/floor' );
    125 
    126 var x0 = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] );
    127 var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
    128 
    129 var N = floor( x0.length / 2 );
    130 
    131 var v = snanvariancepn( N, 1, x1, 2 );
    132 // returns 6.25
    133 ```
    134 
    135 #### snanvariancepn.ndarray( N, correction, x, stride, offset )
    136 
    137 Computes the [variance][variance] of a single-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm and alternative indexing semantics.
    138 
    139 ```javascript
    140 var Float32Array = require( '@stdlib/array/float32' );
    141 
    142 var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );
    143 
    144 var v = snanvariancepn.ndarray( x.length, 1, x, 1, 0 );
    145 // returns ~4.33333
    146 ```
    147 
    148 The function has the following additional parameters:
    149 
    150 -   **offset**: starting index for `x`.
    151 
    152 While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [variance][variance] for every other value in `x` starting from the second value
    153 
    154 ```javascript
    155 var Float32Array = require( '@stdlib/array/float32' );
    156 var floor = require( '@stdlib/math/base/special/floor' );
    157 
    158 var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
    159 var N = floor( x.length / 2 );
    160 
    161 var v = snanvariancepn.ndarray( N, 1, x, 2, 1 );
    162 // returns 6.25
    163 ```
    164 
    165 </section>
    166 
    167 <!-- /.usage -->
    168 
    169 <section class="notes">
    170 
    171 ## Notes
    172 
    173 -   If `N <= 0`, both functions return `NaN`.
    174 -   If `n - c` is less than or equal to `0` (where `c` corresponds to the provided degrees of freedom adjustment and `n` corresponds to the number of non-`NaN` indexed elements), both functions return `NaN`.
    175 
    176 </section>
    177 
    178 <!-- /.notes -->
    179 
    180 <section class="examples">
    181 
    182 ## Examples
    183 
    184 <!-- eslint no-undef: "error" -->
    185 
    186 ```javascript
    187 var randu = require( '@stdlib/random/base/randu' );
    188 var round = require( '@stdlib/math/base/special/round' );
    189 var Float32Array = require( '@stdlib/array/float32' );
    190 var snanvariancepn = require( '@stdlib/stats/base/snanvariancepn' );
    191 
    192 var x;
    193 var i;
    194 
    195 x = new Float32Array( 10 );
    196 for ( i = 0; i < x.length; i++ ) {
    197     x[ i ] = round( (randu()*100.0) - 50.0 );
    198 }
    199 console.log( x );
    200 
    201 var v = snanvariancepn( x.length, 1, x, 1 );
    202 console.log( v );
    203 ```
    204 
    205 </section>
    206 
    207 <!-- /.examples -->
    208 
    209 * * *
    210 
    211 <section class="references">
    212 
    213 ## References
    214 
    215 -   Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958][@neely:1966a].
    216 -   Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036][@schubert:2018a].
    217 
    218 </section>
    219 
    220 <!-- /.references -->
    221 
    222 <section class="links">
    223 
    224 [variance]: https://en.wikipedia.org/wiki/Variance
    225 
    226 [@stdlib/array/float32]: https://www.npmjs.com/package/@stdlib/array-float32
    227 
    228 [mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
    229 
    230 [@neely:1966a]: https://doi.org/10.1145/365719.365958
    231 
    232 [@schubert:2018a]: https://doi.org/10.1145/3221269.3223036
    233 
    234 </section>
    235 
    236 <!-- /.links -->