README.md (10792B)
1 <!-- 2 3 @license Apache-2.0 4 5 Copyright (c) 2020 The Stdlib Authors. 6 7 Licensed under the Apache License, Version 2.0 (the "License"); 8 you may not use this file except in compliance with the License. 9 You may obtain a copy of the License at 10 11 http://www.apache.org/licenses/LICENSE-2.0 12 13 Unless required by applicable law or agreed to in writing, software 14 distributed under the License is distributed on an "AS IS" BASIS, 15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 See the License for the specific language governing permissions and 17 limitations under the License. 18 19 --> 20 21 # snanstdevtk 22 23 > Calculate the [standard deviation][standard-deviation] of a single-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm. 24 25 <section class="intro"> 26 27 The population [standard deviation][standard-deviation] of a finite size population of size `N` is given by 28 29 <!-- <equation class="equation" label="eq:population_standard_deviation" align="center" raw="\sigma = \sqrt{\frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2}" alt="Equation for the population standard deviation."> --> 30 31 <div class="equation" align="center" data-raw-text="\sigma = \sqrt{\frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2}" data-equation="eq:population_standard_deviation"> 32 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@30aa8f4333f62d8bfaa4cce77df48e63c349da13/lib/node_modules/@stdlib/stats/base/snanstdevtk/docs/img/equation_population_standard_deviation.svg" alt="Equation for the population standard deviation."> 33 <br> 34 </div> 35 36 <!-- </equation> --> 37 38 where the population mean is given by 39 40 <!-- <equation class="equation" label="eq:population_mean" align="center" raw="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" alt="Equation for the population mean."> --> 41 42 <div class="equation" align="center" data-raw-text="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" data-equation="eq:population_mean"> 43 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@30aa8f4333f62d8bfaa4cce77df48e63c349da13/lib/node_modules/@stdlib/stats/base/snanstdevtk/docs/img/equation_population_mean.svg" alt="Equation for the population mean."> 44 <br> 45 </div> 46 47 <!-- </equation> --> 48 49 Often in the analysis of data, the true population [standard deviation][standard-deviation] is not known _a priori_ and must be estimated from a sample drawn from the population distribution. If one attempts to use the formula for the population [standard deviation][standard-deviation], the result is biased and yields an **uncorrected sample standard deviation**. To compute a **corrected sample standard deviation** for a sample of size `n`, 50 51 <!-- <equation class="equation" label="eq:corrected_sample_standard_deviation" align="center" raw="s = \sqrt{\frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2}" alt="Equation for computing a corrected sample standard deviation."> --> 52 53 <div class="equation" align="center" data-raw-text="s = \sqrt{\frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2}" data-equation="eq:corrected_sample_standard_deviation"> 54 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@30aa8f4333f62d8bfaa4cce77df48e63c349da13/lib/node_modules/@stdlib/stats/base/snanstdevtk/docs/img/equation_corrected_sample_standard_deviation.svg" alt="Equation for computing a corrected sample standard deviation."> 55 <br> 56 </div> 57 58 <!-- </equation> --> 59 60 where the sample mean is given by 61 62 <!-- <equation class="equation" label="eq:sample_mean" align="center" raw="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" alt="Equation for the sample mean."> --> 63 64 <div class="equation" align="center" data-raw-text="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" data-equation="eq:sample_mean"> 65 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@30aa8f4333f62d8bfaa4cce77df48e63c349da13/lib/node_modules/@stdlib/stats/base/snanstdevtk/docs/img/equation_sample_mean.svg" alt="Equation for the sample mean."> 66 <br> 67 </div> 68 69 <!-- </equation> --> 70 71 The use of the term `n-1` is commonly referred to as Bessel's correction. Note, however, that applying Bessel's correction can increase the mean squared error between the sample standard deviation and population standard deviation. Depending on the characteristics of the population distribution, other correction factors (e.g., `n-1.5`, `n+1`, etc) can yield better estimators. 72 73 </section> 74 75 <!-- /.intro --> 76 77 <section class="usage"> 78 79 ## Usage 80 81 ```javascript 82 var snanstdevtk = require( '@stdlib/stats/base/snanstdevtk' ); 83 ``` 84 85 #### snanstdevtk( N, correction, x, stride ) 86 87 Computes the [standard deviation][standard-deviation] of a single-precision floating-point strided array `x` ignoring `NaN` values and using a one-pass textbook algorithm. 88 89 ```javascript 90 var Float32Array = require( '@stdlib/array/float32' ); 91 92 var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] ); 93 94 var v = snanstdevtk( x.length, 1, x, 1 ); 95 // returns ~2.0817 96 ``` 97 98 The function has the following parameters: 99 100 - **N**: number of indexed elements. 101 - **correction**: degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [standard deviation][standard-deviation] according to `N-c` where `c` corresponds to the provided degrees of freedom adjustment. When computing the [standard deviation][standard-deviation] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the corrected sample [standard deviation][standard-deviation], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction). 102 - **x**: input [`Float32Array`][@stdlib/array/float32]. 103 - **stride**: index increment for `x`. 104 105 The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [standard deviation][standard-deviation] of every other element in `x`, 106 107 ```javascript 108 var Float32Array = require( '@stdlib/array/float32' ); 109 var floor = require( '@stdlib/math/base/special/floor' ); 110 111 var x = new Float32Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN ] ); 112 var N = floor( x.length / 2 ); 113 114 var v = snanstdevtk( N, 1, x, 2 ); 115 // returns 2.5 116 ``` 117 118 Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views. 119 120 <!-- eslint-disable stdlib/capitalized-comments --> 121 122 ```javascript 123 var Float32Array = require( '@stdlib/array/float32' ); 124 var floor = require( '@stdlib/math/base/special/floor' ); 125 126 var x0 = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] ); 127 var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element 128 129 var N = floor( x0.length / 2 ); 130 131 var v = snanstdevtk( N, 1, x1, 2 ); 132 // returns 2.5 133 ``` 134 135 #### snanstdevtk.ndarray( N, correction, x, stride, offset ) 136 137 Computes the [standard deviation][standard-deviation] of a single-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm and alternative indexing semantics. 138 139 ```javascript 140 var Float32Array = require( '@stdlib/array/float32' ); 141 142 var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] ); 143 144 var v = snanstdevtk.ndarray( x.length, 1, x, 1, 0 ); 145 // returns ~2.0817 146 ``` 147 148 The function has the following additional parameters: 149 150 - **offset**: starting index for `x`. 151 152 While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [standard deviation][standard-deviation] for every other value in `x` starting from the second value 153 154 ```javascript 155 var Float32Array = require( '@stdlib/array/float32' ); 156 var floor = require( '@stdlib/math/base/special/floor' ); 157 158 var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] ); 159 var N = floor( x.length / 2 ); 160 161 var v = snanstdevtk.ndarray( N, 1, x, 2, 1 ); 162 // returns 2.5 163 ``` 164 165 </section> 166 167 <!-- /.usage --> 168 169 <section class="notes"> 170 171 ## Notes 172 173 - If `N <= 0`, both functions return `NaN`. 174 - If `n - c` is less than or equal to `0` (where `c` corresponds to the provided degrees of freedom adjustment and `n` corresponds to the number of non-`NaN` indexed elements), both functions return `NaN`. 175 - Some caution should be exercised when using the one-pass textbook algorithm. Literature overwhelmingly discourages the algorithm's use for two reasons: 1) the lack of safeguards against underflow and overflow and 2) the risk of catastrophic cancellation when subtracting the two sums if the sums are large and the variance small. These concerns have merit; however, the one-pass textbook algorithm should not be dismissed outright. For data distributions with a moderately large standard deviation to mean ratio (i.e., **coefficient of variation**), the one-pass textbook algorithm may be acceptable, especially when performance is paramount and some precision loss is acceptable (including a risk of computing a negative variance due to floating-point rounding errors!). In short, no single "best" algorithm for computing the standard deviation exists. The "best" algorithm depends on the underlying data distribution, your performance requirements, and your minimum precision requirements. When evaluating which algorithm to use, consider the relative pros and cons, and choose the algorithm which best serves your needs. 176 177 </section> 178 179 <!-- /.notes --> 180 181 <section class="examples"> 182 183 ## Examples 184 185 <!-- eslint no-undef: "error" --> 186 187 ```javascript 188 var randu = require( '@stdlib/random/base/randu' ); 189 var round = require( '@stdlib/math/base/special/round' ); 190 var Float32Array = require( '@stdlib/array/float32' ); 191 var snanstdevtk = require( '@stdlib/stats/base/snanstdevtk' ); 192 193 var x; 194 var i; 195 196 x = new Float32Array( 10 ); 197 for ( i = 0; i < x.length; i++ ) { 198 x[ i ] = round( (randu()*100.0) - 50.0 ); 199 } 200 console.log( x ); 201 202 var v = snanstdevtk( x.length, 1, x, 1 ); 203 console.log( v ); 204 ``` 205 206 </section> 207 208 <!-- /.examples --> 209 210 * * * 211 212 <section class="references"> 213 214 ## References 215 216 - Ling, Robert F. 1974. "Comparison of Several Algorithms for Computing Sample Means and Variances." _Journal of the American Statistical Association_ 69 (348). American Statistical Association, Taylor & Francis, Ltd.: 859–66. doi:[10.2307/2286154][@ling:1974a]. 217 218 </section> 219 220 <!-- /.references --> 221 222 <section class="links"> 223 224 [standard-deviation]: https://en.wikipedia.org/wiki/Standard_deviation 225 226 [@stdlib/array/float32]: https://www.npmjs.com/package/@stdlib/array-float32 227 228 [mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray 229 230 [@ling:1974a]: https://doi.org/10.2307/2286154 231 232 </section> 233 234 <!-- /.links -->