time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

repl.txt (4255B)


      1 
      2 {{alias}}( N, correction, x, stride )
      3     Computes the standard deviation of a single-precision floating-point strided
      4     array ignoring `NaN` values and using a two-pass algorithm.
      5 
      6     The `N` and `stride` parameters determine which elements in `x` are accessed
      7     at runtime.
      8 
      9     Indexing is relative to the first index. To introduce an offset, use a typed
     10     array view.
     11 
     12     If `N <= 0`, the function returns `NaN`.
     13 
     14     If every indexed element is `NaN`, the function returns `NaN`.
     15 
     16     Parameters
     17     ----------
     18     N: integer
     19         Number of indexed elements.
     20 
     21     correction: number
     22         Degrees of freedom adjustment. Setting this parameter to a value other
     23         than `0` has the effect of adjusting the divisor during the calculation
     24         of the standard deviation according to `N - c` where `c` corresponds to
     25         the provided degrees of freedom adjustment. When computing the standard
     26         deviation of a population, setting this parameter to `0` is the standard
     27         choice (i.e., the provided array contains data constituting an entire
     28         population). When computing the corrected sample standard deviation,
     29         setting this parameter to `1` is the standard choice (i.e., the provided
     30         array contains data sampled from a larger population; this is commonly
     31         referred to as Bessel's correction).
     32 
     33     x: Float32Array
     34         Input array.
     35 
     36     stride: integer
     37         Index increment.
     38 
     39     Returns
     40     -------
     41     out: number
     42         The standard deviation.
     43 
     44     Examples
     45     --------
     46     // Standard Usage:
     47     > var x = new {{alias:@stdlib/array/float32}}( [ 1.0, -2.0, NaN, 2.0 ] );
     48     > {{alias}}( x.length, 1, x, 1 )
     49     ~2.0817
     50 
     51     // Using `N` and `stride` parameters:
     52     > x = new {{alias:@stdlib/array/float32}}( [ -2.0, 1.0, 1.0, -5.0, 2.0, -1.0 ] );
     53     > var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
     54     > var stride = 2;
     55     > {{alias}}( N, 1, x, stride )
     56     ~2.0817
     57 
     58     // Using view offsets:
     59     > var x0 = new {{alias:@stdlib/array/float32}}( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0 ] );
     60     > var x1 = new {{alias:@stdlib/array/float32}}( x0.buffer, x0.BYTES_PER_ELEMENT*1 );
     61     > N = {{alias:@stdlib/math/base/special/floor}}( x0.length / 2 );
     62     > stride = 2;
     63     > {{alias}}( N, 1, x1, stride )
     64     ~2.0817
     65 
     66 {{alias}}.ndarray( N, correction, x, stride, offset )
     67     Computes the standard deviation of a single-precision floating-point strided
     68     array ignoring `NaN` values and using a two-pass algorithm and alternative
     69     indexing semantics.
     70 
     71     While typed array views mandate a view offset based on the underlying
     72     buffer, the `offset` parameter supports indexing semantics based on a
     73     starting index.
     74 
     75     Parameters
     76     ----------
     77     N: integer
     78         Number of indexed elements.
     79 
     80     correction: number
     81         Degrees of freedom adjustment. Setting this parameter to a value other
     82         than `0` has the effect of adjusting the divisor during the calculation
     83         of the standard deviation according to `N - c` where `c` corresponds to
     84         the provided degrees of freedom adjustment. When computing the standard
     85         deviation of a population, setting this parameter to `0` is the standard
     86         choice (i.e., the provided array contains data constituting an entire
     87         population). When computing the corrected sample standard deviation,
     88         setting this parameter to `1` is the standard choice (i.e., the provided
     89         array contains data sampled from a larger population; this is commonly
     90         referred to as Bessel's correction).
     91 
     92     x: Float32Array
     93         Input array.
     94 
     95     stride: integer
     96         Index increment.
     97 
     98     offset: integer
     99         Starting index.
    100 
    101     Returns
    102     -------
    103     out: number
    104         The standard deviation.
    105 
    106     Examples
    107     --------
    108     // Standard Usage:
    109     > var x = new {{alias:@stdlib/array/float32}}( [ 1.0, -2.0, NaN, 2.0 ] );
    110     > {{alias}}.ndarray( x.length, 1, x, 1, 0 )
    111     ~2.0817
    112 
    113     // Using offset parameter:
    114     > var x = new {{alias:@stdlib/array/float32}}( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0 ] );
    115     > var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
    116     > {{alias}}.ndarray( N, 1, x, 2, 1 )
    117     ~2.0817
    118 
    119     See Also
    120     --------
    121