time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

snanmeanwd.c (2399B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2020 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 #include "stdlib/stats/base/snanmeanwd.h"
     20 #include <stdint.h>
     21 
     22 /**
     23 * Computes the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using Welford's algorithm.
     24 *
     25 * ## Method
     26 *
     27 * -   This implementation uses Welford's algorithm for efficient computation, which can be derived as follows
     28 *
     29 *     ```tex
     30 *     \begin{align*}
     31 *     \mu_n &= \frac{1}{n} \sum_{i=0}^{n-1} x_i \\
     32 *           &= \frac{1}{n} \biggl(x_{n-1} + \sum_{i=0}^{n-2} x_i \biggr) \\
     33 *           &= \frac{1}{n} (x_{n-1} + (n-1)\mu_{n-1}) \\
     34 *           &= \mu_{n-1} + \frac{1}{n} (x_{n-1} - \mu_{n-1})
     35 *     \end{align*}
     36 *     ```
     37 *
     38 * ## References
     39 *
     40 * -   Welford, B. P. 1962. "Note on a Method for Calculating Corrected Sums of Squares and Products." _Technometrics_ 4 (3). Taylor & Francis: 419–20. doi:[10.1080/00401706.1962.10490022](https://doi.org/10.1080/00401706.1962.10490022).
     41 * -   van Reeken, A. J. 1968. "Letters to the Editor: Dealing with Neely's Algorithms." _Communications of the ACM_ 11 (3): 149–50. doi:[10.1145/362929.362961](https://doi.org/10.1145/362929.362961).
     42 *
     43 * @param N       number of indexed elements
     44 * @param X       input array
     45 * @param stride  stride length
     46 * @return        output value
     47 */
     48 float stdlib_strided_snanmeanwd( const int64_t N, const float *X, const int64_t stride ) {
     49 	int64_t ix;
     50 	int64_t i;
     51 	double n;
     52 	float mu;
     53 	float v;
     54 
     55 	if ( N <= 0 ) {
     56 		return 0.0f / 0.0f; // NaN
     57 	}
     58 	if ( N == 1 || stride == 0 ) {
     59 		return X[ 0 ];
     60 	}
     61 	if ( stride < 0 ) {
     62 		ix = (1-N) * stride;
     63 	} else {
     64 		ix = 0;
     65 	}
     66 	mu = 0.0f;
     67 	n = 0.0;
     68 	for ( i = 0; i < N; i++ ) {
     69 		v = X[ ix ];
     70 		if ( v == v ) {
     71 			n += 1.0;
     72 			mu += (float)((double)( v-mu ) / n);
     73 		}
     74 		ix += stride;
     75 	}
     76 	if ( n == 0.0 ) {
     77 		return 0.0f / 0.0f; // NaN
     78 	}
     79 	return mu;
     80 }