snanmeanpn.js (2837B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var float64ToFloat32 = require( '@stdlib/number/float64/base/to-float32' ); 24 25 26 // MAIN // 27 28 /** 29 * Computes the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using a two-pass error correction algorithm. 30 * 31 * ## Method 32 * 33 * - This implementation uses a two-pass approach, as suggested by Neely (1966). 34 * 35 * ## References 36 * 37 * - Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958). 38 * - Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036). 39 * 40 * @param {PositiveInteger} N - number of indexed elements 41 * @param {Float32Array} x - input array 42 * @param {integer} stride - stride length 43 * @returns {number} arithmetic mean 44 * 45 * @example 46 * var Float32Array = require( '@stdlib/array/float32' ); 47 * 48 * var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] ); 49 * var N = x.length; 50 * 51 * var v = snanmeanpn( N, x, 1 ); 52 * // returns ~0.3333 53 */ 54 function snanmeanpn( N, x, stride ) { 55 var ix; 56 var v; 57 var s; 58 var t; 59 var n; 60 var i; 61 var o; 62 63 if ( N <= 0 ) { 64 return NaN; 65 } 66 if ( N === 1 || stride === 0 ) { 67 return x[ 0 ]; 68 } 69 if ( stride < 0 ) { 70 ix = (1-N) * stride; 71 } else { 72 ix = 0; 73 } 74 o = ix; 75 76 // Compute an estimate for the mean... 77 s = 0.0; 78 n = 0; 79 for ( i = 0; i < N; i++ ) { 80 v = x[ ix ]; 81 if ( v === v ) { 82 s = float64ToFloat32( s + v ); 83 n += 1; 84 } 85 ix += stride; 86 } 87 if ( n === 0 ) { 88 return NaN; 89 } 90 s = float64ToFloat32( s / n ); 91 92 // Compute an error term... 93 t = 0.0; 94 ix = o; 95 for ( i = 0; i < N; i++ ) { 96 v = x[ ix ]; 97 if ( v === v ) { 98 t = float64ToFloat32( t + float64ToFloat32(v-s) ); 99 } 100 ix += stride; 101 } 102 return float64ToFloat32( s + float64ToFloat32(t/n) ); 103 } 104 105 106 // EXPORTS // 107 108 module.exports = snanmeanpn;