time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

ndarray.js (2713B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2020 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var float64ToFloat32 = require( '@stdlib/number/float64/base/to-float32' );
     24 var ssumpw = require( '@stdlib/blas/ext/base/ssumpw' ).ndarray;
     25 var sapxsumpw = require( '@stdlib/blas/ext/base/sapxsumpw' ).ndarray;
     26 
     27 
     28 // MAIN //
     29 
     30 /**
     31 * Computes the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm.
     32 *
     33 * ## Method
     34 *
     35 * -   This implementation uses a two-pass approach, as suggested by Neely (1966).
     36 *
     37 * ## References
     38 *
     39 * -   Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496–99. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958).
     40 * -   Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036).
     41 *
     42 * @param {PositiveInteger} N - number of indexed elements
     43 * @param {Float32Array} x - input array
     44 * @param {integer} stride - stride length
     45 * @param {NonNegativeInteger} offset - starting index
     46 * @returns {number} arithmetic mean
     47 *
     48 * @example
     49 * var Float32Array = require( '@stdlib/array/float32' );
     50 * var floor = require( '@stdlib/math/base/special/floor' );
     51 *
     52 * var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
     53 * var N = floor( x.length / 2 );
     54 *
     55 * var v = smeanpn( N, x, 2, 1 );
     56 * // returns 1.25
     57 */
     58 function smeanpn( N, x, stride, offset ) {
     59 	var mu;
     60 	var c;
     61 
     62 	if ( N <= 0 ) {
     63 		return NaN;
     64 	}
     65 	if ( N === 1 || stride === 0 ) {
     66 		return x[ offset ];
     67 	}
     68 	// Compute an estimate for the mean:
     69 	mu = float64ToFloat32( ssumpw( N, x, stride, offset ) / N );
     70 
     71 	// Compute an error term:
     72 	c = float64ToFloat32( sapxsumpw( N, -mu, x, stride, offset ) / N );
     73 
     74 	return float64ToFloat32( mu + c );
     75 }
     76 
     77 
     78 // EXPORTS //
     79 
     80 module.exports = smeanpn;