time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (6597B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2020 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # smeanli
     22 
     23 > Calculate the [arithmetic mean][arithmetic-mean] of a single-precision floating-point strided array using a one-pass trial mean algorithm.
     24 
     25 <section class="intro">
     26 
     27 The [arithmetic mean][arithmetic-mean] is defined as
     28 
     29 <!-- <equation class="equation" label="eq:arithmetic_mean" align="center" raw="\mu = \frac{1}{n} \sum_{i=0}^{n-1} x_i" alt="Equation for the arithmetic mean."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="\mu = \frac{1}{n} \sum_{i=0}^{n-1} x_i" data-equation="eq:arithmetic_mean">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@fcea3760d526dcb339d39f08234705c4d6e44bbf/lib/node_modules/@stdlib/stats/base/smeanli/docs/img/equation_arithmetic_mean.svg" alt="Equation for the arithmetic mean.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 </section>
     39 
     40 <!-- /.intro -->
     41 
     42 <section class="usage">
     43 
     44 ## Usage
     45 
     46 ```javascript
     47 var smeanli = require( '@stdlib/stats/base/smeanli' );
     48 ```
     49 
     50 #### smeanli( N, x, stride )
     51 
     52 Computes the [arithmetic mean][arithmetic-mean] of a single-precision floating-point strided array `x` using a one-pass trial mean algorithm.
     53 
     54 ```javascript
     55 var Float32Array = require( '@stdlib/array/float32' );
     56 
     57 var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );
     58 var N = x.length;
     59 
     60 var v = smeanli( N, x, 1 );
     61 // returns ~0.3333
     62 ```
     63 
     64 The function has the following parameters:
     65 
     66 -   **N**: number of indexed elements.
     67 -   **x**: input [`Float32Array`][@stdlib/array/float32].
     68 -   **stride**: index increment for `x`.
     69 
     70 The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [arithmetic mean][arithmetic-mean] of every other element in `x`,
     71 
     72 ```javascript
     73 var Float32Array = require( '@stdlib/array/float32' );
     74 var floor = require( '@stdlib/math/base/special/floor' );
     75 
     76 var x = new Float32Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
     77 var N = floor( x.length / 2 );
     78 
     79 var v = smeanli( N, x, 2 );
     80 // returns 1.25
     81 ```
     82 
     83 Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.
     84 
     85 <!-- eslint-disable stdlib/capitalized-comments -->
     86 
     87 ```javascript
     88 var Float32Array = require( '@stdlib/array/float32' );
     89 var floor = require( '@stdlib/math/base/special/floor' );
     90 
     91 var x0 = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
     92 var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
     93 
     94 var N = floor( x0.length / 2 );
     95 
     96 var v = smeanli( N, x1, 2 );
     97 // returns 1.25
     98 ```
     99 
    100 #### smeanli.ndarray( N, x, stride, offset )
    101 
    102 Computes the [arithmetic mean][arithmetic-mean] of a single-precision floating-point strided array using a one-pass trial mean algorithm and alternative indexing semantics.
    103 
    104 ```javascript
    105 var Float32Array = require( '@stdlib/array/float32' );
    106 
    107 var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );
    108 var N = x.length;
    109 
    110 var v = smeanli.ndarray( N, x, 1, 0 );
    111 // returns ~0.33333
    112 ```
    113 
    114 The function has the following additional parameters:
    115 
    116 -   **offset**: starting index for `x`.
    117 
    118 While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [arithmetic mean][arithmetic-mean] for every other value in `x` starting from the second value
    119 
    120 ```javascript
    121 var Float32Array = require( '@stdlib/array/float32' );
    122 var floor = require( '@stdlib/math/base/special/floor' );
    123 
    124 var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
    125 var N = floor( x.length / 2 );
    126 
    127 var v = smeanli.ndarray( N, x, 2, 1 );
    128 // returns 1.25
    129 ```
    130 
    131 </section>
    132 
    133 <!-- /.usage -->
    134 
    135 <section class="notes">
    136 
    137 ## Notes
    138 
    139 -   If `N <= 0`, both functions return `NaN`.
    140 -   The underlying algorithm is a specialized case of Welford's algorithm. Similar to the method of assumed mean, the first strided array element is used as a trial mean. The trial mean is subtracted from subsequent data values, and the average deviations used to adjust the initial guess. Accordingly, the algorithm's accuracy is best when data is **unordered** (i.e., the data is **not** sorted in either ascending or descending order such that the first value is an "extreme" value).
    141 
    142 </section>
    143 
    144 <!-- /.notes -->
    145 
    146 <section class="examples">
    147 
    148 ## Examples
    149 
    150 <!-- eslint no-undef: "error" -->
    151 
    152 ```javascript
    153 var randu = require( '@stdlib/random/base/randu' );
    154 var round = require( '@stdlib/math/base/special/round' );
    155 var Float32Array = require( '@stdlib/array/float32' );
    156 var smeanli = require( '@stdlib/stats/base/smeanli' );
    157 
    158 var x;
    159 var i;
    160 
    161 x = new Float32Array( 10 );
    162 for ( i = 0; i < x.length; i++ ) {
    163     x[ i ] = round( (randu()*100.0) - 50.0 );
    164 }
    165 console.log( x );
    166 
    167 var v = smeanli( x.length, x, 1 );
    168 console.log( v );
    169 ```
    170 
    171 </section>
    172 
    173 <!-- /.examples -->
    174 
    175 * * *
    176 
    177 <section class="references">
    178 
    179 ## References
    180 
    181 -   Welford, B. P. 1962. "Note on a Method for Calculating Corrected Sums of Squares and Products." _Technometrics_ 4 (3). Taylor & Francis: 419–20. doi:[10.1080/00401706.1962.10490022][@welford:1962a].
    182 -   van Reeken, A. J. 1968. "Letters to the Editor: Dealing with Neely's Algorithms." _Communications of the ACM_ 11 (3): 149–50. doi:[10.1145/362929.362961][@vanreeken:1968a].
    183 -   Ling, Robert F. 1974. "Comparison of Several Algorithms for Computing Sample Means and Variances." _Journal of the American Statistical Association_ 69 (348). American Statistical Association, Taylor & Francis, Ltd.: 859–66. doi:[10.2307/2286154][@ling:1974a].
    184 
    185 </section>
    186 
    187 <!-- /.references -->
    188 
    189 <section class="links">
    190 
    191 [arithmetic-mean]: https://en.wikipedia.org/wiki/Arithmetic_mean
    192 
    193 [@stdlib/array/float32]: https://www.npmjs.com/package/@stdlib/array-float32
    194 
    195 [mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
    196 
    197 [@welford:1962a]: https://doi.org/10.1080/00401706.1962.10490022
    198 
    199 [@vanreeken:1968a]: https://doi.org/10.1145/362929.362961
    200 
    201 [@ling:1974a]: https://doi.org/10.2307/2286154
    202 
    203 </section>
    204 
    205 <!-- /.links -->